
Am 1 -TH-65-12

1 VOLUME IV
(OF FIVE VOLWEES COVERING

SIGNAL =SIGN F TNIQES)

I-

TEM TICL MEOMT AIAL-TR-65-12 VOJAE IV

i JFbruarY, 1965

D rBMION-JEEE DETCTION I0p:

J. C. Hancock, Principal Investigator

D. G. Lainiotis

Aeronautical Systems Division
Air Force Systems Commnd

Wright-Patterson Air Force Base

Project No. 4335, Task No. 433529

Prepared under Contract AF33(657)-10709
by School of Electrical Engineering,
Purdue University, Lafayette, Indiana

~\



Best
Available

Copy



I
I FOREWRD

I This report was prepared by Purdue University under USAF Contract

Number A. 33(657)-10709. The contract was initiated unde:r Project 4335,

"(U) Applied Communications Research for AF Vehicles," Task 433529, "Basic

Techniques and Systems Integration." The work was administered under the

direction of the Communications Branch, Electronic Warfare Division, Air

I Force Avionics Laboratory, Wright-Patterson Air Force Ba3e, Ohio.r Mr. B. W. Russell was project engineer.

Dr. John Hancock, Purdue University, was the Principal Investigator

on the contract. This report covers work conducted from February 1963 to

December 1964.
S

The first volume in this series is a tutorial overview of the

several problem areas investigated under this effort and serves to integrate

and place in perspective the more detailed analysis presented in succeeding

[volumes. The relation of this Volume IVp "Distribution-Free Detection Pro-

cedures," to the overall program may be obtained by referring to Volume I.

[Throughout the course of this work, the principal investigators have
benefited from the several discussions with Mr. Blinn W. Russell, the pro-

i- ject monitor, and his associates. His interest in this work is gratefully

acknowledged.

VOLUME IV

I



ABSTRACT

A class of tvo-input detection systems for digital coaiunication over

randam and unknown channels is investigated. The systems investigated possess

false-alarm rates which are invariant for vide classes of channel statistics.

Specifically, coincidence detection procedures with invariant or distri-

bution-free false-alarm rates are proposed and investigated. The only infor-

ntion concerning the channel statistics vhich is required by these detectors

is the median of the noise under no-signal conditions. The coincidence pro-

cedures are subsequently modified so that the detectors utilizing them beccme

either learning systems with respect to slowly time-varying and/or 'nknown

location parameters or adaptive systems with respect to rapidly varyizZ and/or

unknown location parameters. The classes of detection problems for which

the false-alarm rates of the above procedures detectors remain distribution-free

are also obtained.

In addition to the distribution-free coincidence derectorsq a detector

based on the T-statistic, and vel suited for the detection of stochastic

signals in noise, is proposed and investigated. The T-statistic is then

modified so that the detector utilizing it becomes an adaptive system with

respect to repidly varying and/or unknown location parameters. The wide

classes of detection problems for which the above detectors remain distri-

bution-free are aleo obtained.

The distribution-free detectors ae then applied to various practical

detection probleas, and their performances are evaluated and ccopared to the

perforaw.ces of comparble likelihood detectors.

This technical documentary report has been reviewed -and> approved.

Lt Colonel,

Chief, Electronic Warfare Division
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Chapter 1

1.1 General Bckground of Problem and Brief Review of the Literature

Systems for detecting the presence or absence of a signal in noise

have been extensively investigated. Many of these investigations have

been based on the assumption that informtion is available concerning the

probability distributions of the noise only and of the mixture of signal

and noise. The distributions are usually assumed to be gaussian, and

the test statistic most often utilized is based on the likelihood ratio.

In order for the latter to be coputed, knowledge of the form of the

distributions is required.

However, the statistics are not always known or readily obtainable.

In many practical cases of interest - such as subsurface ccmications,

underwater sound detection, cunications under Jamming conditions, and

space coamunications - the probability distributions m not be known, nor

can they be easily obtained. Extensive statistical studies, such as those

by Pearson and Geyen (1,2), have been made of the sensitivity of various

likelihood ratio tests to non-norwmlity.

Since likelihood detectors are inapplicable whenever there is not

information concerning the functional form of the underlying distributions,

and since it is not possile to insure a specified value of a chosen index

of performance when a likelihood detector is used and the distributions

are not known, it is necessary t( seek detection procedures that are

invariant in some sense under a change of the underlying probability

distributions - as indicated by Middleton (3). Such procedures may be

based on a refereLnC or control sample obtained under noise only conditions,

Manuscript teleased by authors on Vebruary 1965 for publication as an RTD
Technical Report
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which can be compared with a sample obtained when a decision is to be

made on the presence or absence of signal. In other words, since the

received data cannot be described by distribution functions of known form,

two samples can be utilized - the ieference sample obtained when it is

knovn that only noise exists in the channel, and a data sample obtained

under unknown conditions - the decision being based on comparison between

the two samples. Since random processes are being dealt with, this com-

parison must be a comparison of statistical properties. The logic behind

this approach is based on the assumption that the presence of a signal will

cause a difference to exist between the statistics of the reference and

data samples.

Capon, Groginsky., Rushforth, Hancock, Wolff and Kanefsky have all

rather recently applied distribution-free statistical tests to the detec-

tion problem.

Capon (k,5,6) has applied many tests to the detection problem, such

as the Mann-Whitney, the Wald-Wolfowitz, the Kolmogorov-Simirnov and the

rank order tests. Of these, the only ones of interest to the comunica-

tions engineer are the highly efficient Mann-Whitney and the rank order

tests. However, in order for the rank order statistic to be applied to a

specific detection problem, weighting factors must be known. The informa-

tion on these weighting factors cannot be obtained unless the noise distri-

bution is known and even then the factors are often difficult to compute.

Thus, the rank order tests as treated by Capon are not truly distribution-

free. The Mann-Whitney test, though, is distribution free.

Groginsky (7) proposed procedures whereby the weight function of the

rank order detector is determined from the outcome of previous trial of the

detector, thus effectively removing the necessity of knowledge concerning

the distributiono. The ability of such a detector to obtain the required

weight function for a wide class rf distribut:on functions, and to follow
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changes in the structure of the signals and noise, constitutes its

adaptive feature. Stability and performnce of various schemes to update

the weight function were also studied.

Rushforth (8) re-examined rank order tests and obtained results of

practical importance for detection problem. Hancock (9) re-examined the

Mann-Whitney test and obtained results for non-gaussian noise statistics.

Wolff (10) pointed out that the polarity coincidence correlator is

non-parametric in that the false-alarm rate depends only on the median of

the noise. The latter was assumed to be zero. However, the assumption of

zero median for the noise may not alvays be a realistic assumption, in which

case this test is no longer distribution-free.

Kanefsky (11) subsequently shoved that the effect of a non-zero median

on the polarity coincidence correlator was removed when an adaptive procedure

to set the threshold level for inputs with quasi-stationary medians - such

as described by Eykhoff (12) and Zadeh (13) - was employed. The modified

polarity coincidence correlator was then applied to various detection

problems of practical importance and its performance compared to that of

various optimum and suboptimum detectors.

From the citings of the above literature, it is seen that there have

been numerous investigations of the applicability of various distribution-

free tests to the detection problem. However, the previous investigations

by no means exhaust the subject. There are many very promising distribu-

tion-free tests that have not been previously investigated from the detec-

tion theory standpoint. Some involve the use of coincidence detection

procedures. These coincidence procedures for detecting the presence or

absence of a signal in noise have been studied extensively by Harrington

(14), Schwrtz (15), Capon (16), and Dunimovich (17). The detectors used

choose a threshold level and count the number of observations that exceed

this level. On the basis of this number, the detector decidea whether or



not there is a signal present. In earlier investigations of coincidence

procedures, the threshold was chosen, on the basis of intuition and engineering

judgent, to be the mean of the input waveform under no-signal conditions.

This choice of threshold leads to a suboptimua coincidence procedure. Later,

an analytical and more sophisticated approach to the subject was taken, and

optima coincidence procedures were obtained for weak signals in noise. The

optima coincidence detection procedure chooses the threshold level in such

a manner that it requires the minimum input signal-to-noise ratio to insure

a specified information rate and error probability. Sow investigators

have obtained the optimum coincidence detector for particular detection

problems by means of a point-by-point graphical procedure. However, it

Ast be emphasized that to obtain the optimua threshold, ccuplete knowledge

of the first-order probability distributions under signal and under no-

signal conditions is required. Moreover, the threshold is optimum only for

the particular detection problem for which it was obtained.

In general, the coincidence detection procedures proposed in the past

are parametric procedures - and hence inapplicable whenever the probability

distributions are unknown. They are optimum for a particular detection

problem for which they have been obtained and becom suboptinma, if not

useless, under different circumstances. The most important drabaok of

the parametric coincidence procedures in the face of unknown distributions

is their inability to specify and guarantee the attainment of a desired

value of a specified index of performance, such as false-alarm rate. Thusp

a need exists for coincidence detection procedures that are applicable whan

the distributions are unknown and that possess an index of perforucee

invariant under changes in the statistics of the detection problem.



1.2 General Assuptions

The cardinal assumptions on which this investigation is based must

be emphasized. These are a) that two sample functions are available; and

b) that independent samples can be obtained from the two sample functions

without knowing the underlying probability distributions. In addition, all

the investigations are restr.cted to the detection of weak signals in noise.

Coperisons between nonparamtric, or distribution-free detection procedures,

and parametric ones are made on the basis of the concept of asymptotic

relative efficiency which is a measure of relative inforation rate for

specific error probability.

1.3 Methods and Procedures

In this investigation, two distribution-free test statistics are

utilized; these are characterized by simlcity, lack of severe restrictive

assumption, and high efficiency. They consist of the sign, or wedian, test

statistic and the T-statistic. The first is well suited for the detection

of deterministic signals in noise, while the T-statistic is well suited for

the detection of stochastic signals in noise.

The sign test statistic as used here constitutes a coincidence detec-

tion procedure. In this investigation, coincidence detection procedures

with invariant false-alar rates for a wide class of distribution functions

are proposed and investigated. Conditions under which the coincidence pro-

cedures remain distribution-free are also obtained. The detectors based

on the distribution-free coincidence procedures are then applied to vwaious

detection probiems of practical iportance; their perforwnce in the prob-

lems is evaluated and compared to that of likelihood detectors.

In the distribution-free coincidence procedures investigated here, the

threshold is chosen so that the test statistic possesses, under no-signal

conditions, a known distribution with constant and know mean and variance,
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independent of the statistics of the detection problem. The invariant

nature of the test statistic distribution under no-signal conditions insures

a false alarm rate invariant with respect to changes in the channel statistics.

The threshold is chosen to be a spec.fiel noise distribution quantile,

namely, the median (recalling that the ')eiJan" is the point at which the

cumlative distrib-tion is 0.5) - hence the name 'edian detector" for

the distribution-free coinciience proceduA. -t must be noted that to

employ the median detect cr, the median of the noise under no-signal condi-

tions must be known. The latter is the only information concerning the

channel statistics required by the median detector. Since, in many detec-

tion problems of interest, even this minimal information concerning the

channel statistics may not be arailable, the zsedian detector is made a lear-

ning system with respect to the unfkmon mdian f-r a vide class of distri-

bution functions. Thus, a iea--ning pztn-lare is herein proposed and inves-

tigated whereby the threshold is adjusted tc# maintain an invariant false-

alarm rate even in the case f an unlknowr, stationzary or quasi-stationary

noise median. The conditi ons under whi ch the learning edian detector

remains distribution-free are octained.. The ieazning me~ian detector is

then applied to a gwaasirAn and to a no,-gais.an situa.tiun of rractical

importance, and its perfirmance and. Leax._ng efficienyj are evaluated

and compared to the performance axA leazning effi,-iency cf likelihood

detector,

The median detector Is also made adaptive to rapid changes in the

structure of the noise for a vide clars of distribution functions; that is,

an adaptive prccedure is pr-posed and investigated whereby the threshold

is adusted to maintain an invariant fals?-alarm rate even for non-sta-

tionary noise medians. The ifniAiti ,T,5 .ruer ht-h th- adaptive median

detector remains distributi.n-frte ar '.,btaired. The adaptive median
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detector is then applied to varimis mteceoti problems and its performance

is evaluated and caspared to that of other distribution-free detectors and

to that of likelihood detectors.

In this investigation, the T-statistic, an efficient test statistic

for the detection of changes in variance, is applied to the problem of

detecting stochastic signals in noise. The conditions under which the

T-statistic remains distribution-free are obtained. To employ the

T-detector based on the T-statistic, the medians of the noise in the

reference and data channels mist be known. The T-detector is applied to

a detection problem of practical importance, and its performance in the

problem is evaluated and compared to the performance of the equivalent

likelihood detector.

The T-dtector is also made adaptive to changes in the structure of

the noise for a vide class of distribution functions; that is, an adaptive

procedure is proposed and investigated by means of which the threshold is

adjusted to maintain an invariant false-alarm rate when the noise medians

are rapidly changing and/or unknown. Conditions unddr h ich the adaptive

T-detector remains distribution-free are also obtained. The adaptive

T-detector is then applied to the dete,.,ion of a gaussian sial in

gaussin noise and its performance in the problem evaluated and compared

to the performances of the T-detector and optimum likelihood detector.

1.4 Preview of Subsequent Chapters

In Chapter 2, the detection criterion utilized In this investigation

and the assumptions on tbich it is based are discussed. The rer-lizability

of the assumptions i ;shown. In the sam chapter, suitable means for

comparing the distribution-free and likelihood detectors are proposed and

their physical significance discussed.

In Chapter 3, coincidence detection procedures with invariant false-
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alarm rates for a vide class of distribution functions are proposed. In

part-feular, the median detector, based on a specif.c distribution-free

ceincidence procedure, is investigated and its general properties obtained.

Subsequently, the median detector is applied to various detection problems

of practical importance; its performance is evaluated and compared to the

performance of likelihood detectors.

In Chapter It, the median detector is made a learning system with

respect to unknown stationary or quasi- stationary medians. Conditions

under which the learning median detector false-alarm rate remains distri-

bution-free are also obtained. Subsequently, the learning median detector

is applied to wo detection problems of practical importance and its

performance and learning efficiency are evaluated and compared to the

performance and learning efficiency of likelihood detectors.

In Chapter 5, the median detector is made adaptive to non-stationary

noise medians. Conditions under which the adaptive median detector false-

alarm rate remains destribution-free are obtained. The a~daptive median

detector is then applied to various detectioh problems and its performance

is evaluated and compared to that of likelihood detectors.

In Chapter 6, detection based on the T-statistic is investigated and

its general properties examined. Conditions under which the T-detector

false-alarm rate remains distribution-free are also obtained. The T-

detector is then applied to the problem of detecting a gaussian signal

in gaussian noise, and its performance in the problem is evaluated and

compared to that of a likelihood detector.

In Chapter 7, tne T-detector is made adaptive ith respect to

rapidly changing and/or unknown data and reference channel noise medians.

The conditions under which the ndaptive T-detector false-alarm rate

-emains dtLtrbution-free are obtained. The adaptive T-detector is
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then applied to the detect-on of a gmussisn sigal in gaussian noise

and its performance is evaluated and ecupared to that of a likelihood

detector.

In Chapter 8, conclusions are drawn and areas for future work are

indicated.
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C1.;ter 2

GEERAL CONSIERATIOMS

2.1 Introduction

In this chapter, the detection criterion utilized in this investigation

and the assumptions on which it is based are presented and discussed. It is

shown that the assumptions are reasonable and the conditions implied are

realizable, under certain conditions.

in the weak signal case, the test statistics employed here obey a set

of rellwfrity conditions. These are stated and their significance is

discussed. A performance relation which has been previously derived from

the regularity conditions is also presented. Fbr a given detection problem,

it relates the information rate, signal-to-tioise ratio, and the error proba-

bility to a constant which is characteristic of the detector used. Thus,

the above constant may be utilized as an index of performance of the

detection system.

For comparing the distribution-free detectors to their equivalent

likelihood detectors, suitable means are proposed and their physical signi-

ficance discussed. These are the asymptotic relative efficiency and the

detector output signal-to-noise ratio. The asymptotic relative efficiency

is shown to be a measure of the relative information rate for a specified

err-or probability and vanishing input signal-to-noise ratios. The output

signl- to-noise ratio is defined to be the difference between the means of

the test tatistic under no-signal conditions divided by the variance of

the statistic under signal conditions. It is shown, for tht weak signal
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case treated here, that the output signal-to-noise ratio as defined above

is functionally related to the error probability. The exact functional

relation is also given.

2.2 The Detection Criterion

The detection criterion utilized in this investigation is based on

the following assumptions. It is assumed that:

a. it is possible to obtain a sample function N(t) of the noise

randcm process (N(t)), N(t) hereon to be referred to as th.t-

reference sample function;

b. it is possible to obtain a sample function Y(t) of the channel

output stochastW? process (Y(t)), Y(t) hereon to be referred to

as the data sample;

c. it is possible to obtain n independent samples Yl' Y2 ' "- Yn

from the sample function Y(t) and m independent sampler X, X2 ,

... X from the sample function N(t);m

d. in the absence of the signal, (Y(t)) and (N(t)) are two stochastic

processes of identical first order distributions

On the basis of the samples YV Y2 ' ... Yn and X1 , X2, ... X, a

decision procedure for detecting deterministic or stochastic signals in

noise is formulated by testing:

H : probability distribution function (cdf) of Yi is G (y), i - 1,2,

-.n and cdf of X is F0 (x), i = 1,2, ...m and such that Fo (y)

G (y); signal is absent

against

Hl: probability distribution function of Yi is Gi (y) and that of Xi

is F (y) and such that Gi (Y) 4 Fo(y); signal is present
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where F(y) is tne distribution function of Xi when the signal is present or

absent, Go(y) is the distribution function of Yi when the signal is absent,

and G (y) is the distribution of Ti in the presence of signal. It is to

be noted that G", (y) dpends both on the inde- i and z, the signal-to-noise

r-_to parametL:.

The ahove decision procedure simply ztates that if the signal is

absent, then the distribution of Yi must be the same as the distribution

of X, since both were obtained frcm stochastic processes of ident±cal

first order statistics under no-signal conditions. If, however, the signal

is present, then the distribution function of Y. is not the same as that of1

Xi since the samples Yi were obtained from a sample function of the signal

and noise process (Y(t)) while the samples Xi were obtained from a

sample function of the noisz- only random process(N(t)).

From the previous discussion of the detection criterion and its

associated assumptions, it is obvious that the acqulsition of the reference

sample function from the noise random process and the extraction of

independent samples fron the data and reference sample functions are matters

of cardinal importance.

The acquisition of the reference sample function may be accomplished

in various ways depending on the nature of the noise process and the

requirements on information rate. If the noise process is stationary, then

N(t) can be obtained once and for all before the transmission of information

commences. From N(t) the m samples will then be obtained and stored in

the receiver, to be compared later with the n data samples obtained fron

Y(t). If the noise randc. process is quasi-stationary - that is, if the

noise statistics although varying with time do so rather slowly in comparison
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with the signaling rate - then one obtains the a noise samples from the

noise entering the receiver when it is known that only noise exists In

the channel, and uses them only for as long as the noise process remains

stationary. Whenever the noise statistics begin to change, the tranmission

of information must be interrupted for a sufficient tine to enable the

receiver to collect a ney set of z aamples to be used for as long as the

noise remains stationary. The previous procedure used for acquiring the

m noise samples when the noise statististics are quasi-stationary requires

knowledge of the length of the time interval for which the noise statistics

are stationary. Such knowledge may be bad as a result of experimental or

theoretice, investigations. Another disadvantage of the above procedure

is that it requires interrupting the transmission of inforwtion, with a

cmcsequ-nt reduction in information rate. If such reduction of information

rate is undesirable, or if knovledge concerning the length of time during

which the noise statistics renai stationary is not forthccuing, one may

employ space, angle or frequency diversity to secure a channel containing

noise orly. In selecting the channels, care must be taken to insure that

the first-order noise statistics will be the same in the reference and data

channels. Hoviever, even after a careful selection of the reference channel,

it is still possible that differences between the first order probability

distributions of the reference channel and data channel noise random proc-

esses will exist. To guard against erroneous decisa.ons resulting from such

differences, two of the test statistic treated here are made adaptive to

differences in noise statistics or to quasi-stationary variations in the

noise statistics.

If the channel statistics are non-stationary, that is, if the
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variations in statistics occur at a rate comparable to the s..gnaling rate,

it is evident that one must by necessity employ diversity in order to secure

a reference channel and a data channel such that the noise processes present

in the channels have identical first order statistics

The assumption of independent samples is of prime importance and at

the basis of every result obtained concerning distribution-free statistics.

However, despite the importance attached to it, no sampling procedure has

been proposed to date that would enable one to obtain independent samples

without knowledge of the statistics of *he process. The statement is

usually made that to obtain independent samples one must sample infrequently.

However, no quantitative measure has teen given of the length of time

between samples required to i:sure the independence of the samples. Admittedly,

the subject is a very difficult one. A promising approach to the problem,

at least for stationary or sufficiently quasi-stationary random processes,

may be found in distribution-free tests of independence. Distribltion-free

tests of independence have been studied extensively in the statistical

literature (18,19). The tests require n pairs (x, y) of samples from a

continuous distribution function F(x, y) with contin'aAt.s marginal distribution

functions G(x), H(y). They are used to test the hypothesis H : F(x, y) =0

G(x) H(y), for all x, y. In applying the tests to the commnnication

problem, one would obtain the sample pairs fram the channel output sample

function as shown in figure 1 The time T is the time allrwed between

samples and the question to be answered is whethor it is sufficiently long

to insure ti'e independence of the satples. It is seen, from figure 1, that

to collect n pairs of samples (x, y) where x and y are T seconds apart

requires considerable time. During this time the first and second order

statistics .f the process must remain the same in order for the test to
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be applicable - hence the necessity for stationarity or quasi-stationarity

of the random processes.

X, Yi X 2 2 . 1 XXI

Fig. 1. Sampling for Test of Independence

2.3 Means of Ccwparison

A detection theory to be complete must a) suggest the structure of

the detection system, b) specify procedures for evaluating the perforrsnce

of a particular system, and c) specify means for coparing varibuz systems.

A choice of one of the many distribution-free test statistics specifies the

detector structure. Thus, distribution-free detection theory fulfills the

first of the above requirements. In the following, means for evaluating

the performance of a detector and means for ccmraring it to the performance

of other detectors will be given. To facilitate the presentation, a set

of regularity conditions that the detectors investigated here obey will be

stated and their significance discussed. The conditions are:

S n- E (S n)
(A) a (9.T-- is asymptotically gaussian with mean zero and variance

0 n
one uniformly for 8 in the closed interval [o, a], a > o, a (S ) > o,

where S is a distribution-free statistic and E0 (Sn), a 2(S)are

its mean and variance, respectively.

(B) Ed(sn) = E (S ) exists for all 0 in (o, a), and is continuous

at 0 = 0.

(C) Limit 1 0(Sn) = K where K is a positive constant;IL L a 8(S n) 0-0
nI -4 o

(D) there exists a sequence (on) suci,. that limit 0n = 0
n - o
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on-mlmtao(Sn) - 1

(F) limit a0
2 (S) - 0

Condition (A) rimply states that the test statistic S is asymptotically

gaussian both under no-signal conditions (e = 0) and under signal conditions

(9 + 0). Thus, accoring to condition (A), the general Character of the

test statistic S , obtained when m and n are large, is shown in Fig. 2.n'

n  s n) P (Ee(sn)

Fig. 2. Test Statistic Distributions for Large Sample Sizes

Here Sg is a decision threshold chosen to insure a probability of false

alarm a. The parameter 1 is the false dismissal probability and 1 - 1 is

the detection probability. Conditions (B), (C), (E) and (F) are self-

explanatory. In connection with condition (c), it should be noted that K

is independent of the number of samples and the input signal-to-nnise ratio

parameter 0 • It depends only on a functional of the noise and signal and

noise only distributions and the particular test statistic utilized.

Condition (D) simply states that we are considering a sequence of alternatives

which approach the hypothesis H° of no signal present as the number of
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samples increases. The sequence of alternatives specified by 6ondition

(D) is necessitated by a desire to maintain constant detection probability

for a constant false-alarm probability as the number of samples increases.

The truth of the above statement will beccme obvious by examining Figure 2,

and applying conditions (E) and (F). The desire to maintain constant

false-alarm and detection probabilities as the number of samples increases

stems from the fact that under constant false-alarm and detection probabilities

as n increases, an exlicit functional relation exists for comparing the

information rates of two detectors under identical conditions. This will

become apparent when the concepts of asymptotic relative efficiency and

output signal-to-noise ratio are discussed. A practical consequence of

condition (D) is that any result obtained based on the above conditions

is valid for vanishing signal-to-noise ratios.

The results obtained in this investigation were derived on the basis

of the aforementioned regularity conditions. Thus, a restriction of the

level of generality was made by considering only the detection of weak

signals in noise. This is appropriate since the weak signal case is

usually the least amenable to solution and the case one usually desires

to solve in practice. Moreover, as was pointed out previously, the choice

of weak signals will also make possible explicit functional expressions

for the means of comparisor.

It has been shown (16) that a detector based on a test statistic

that satisfies the regularity conditions possesses for large sample sizes

a performance relation given

2

limit Ke2n = 2 L erf "I (i - 2a) + erf "I (1- 2f)j (2.5-1)
nnn - co
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This relates the prcbability of error, the input signal-to-noise ratio n

and the number of samples n to K. The constant K is dependent on the test

statistic and the statistics of the detection problem under consideration.

The importance of the parameter K is apparent. It har 'ee. ca"'ed *-,, :z7 .

(20) the efficacy of the test statistic, and it may be utilized as an

index of performance for the detector using the statistic. It will be

seen subseque Aitly that both the asymptotic relative efficiency and the

output signal-to-noise ratio are functionals of the efficacy.

2.3.1 Asymptotic Relative Efficiency

One of the most important considerations in a detection problem is

the length of time required to detect the presence or absence of the

signal with specified accuracy a and 1, since the signaling rate and hence

the information rate depend on the detection time. The only time consumed

by a distribution-free detector utilizing a data and a reference channel

is the time required to obtain the n samples from the data channel. If

the condition of independence is imposed on the samples, then there is

a limit on how closely one may sample and still obtain independent samples.

Hence, the number of samples required for detection is inversely proportional

to the information rate.

A detector based on the test statistic S can be compared to then

detector based on the test statistic L on the basis of the information raten

R possible with S vs. the information rate R* possible with Ln , for thenn

same sigb1 in thne same environment and for the same specified probability

of error. The comparison will be based on the asymptotic relative

efficiency (20,21,22) defined as:
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ARE5 , R *
nn R

*(2.3-2)
n

n

where n are the samples required by Ln and n are the samples required

by S for the same probability of error.n

If the test statistics satisfy conditions (A)-(F), then utilizing the

performance relation (2.3-1), we obtain:

ARES ,L " k (2.3-3)REn, n K*

where K and K are the efficacies of Sn and L n, respectively, defined by

condition (C). Thus, the asymptotic relative efficiency is in this case

a measure of how much better is the information rate of the detector

based on the statistic S than the information rate of the detector basedn

on the statistic L in the detection of the same weak ignal in the samen

environment with a specified error probability.

2.3-2 Signal-to-Noise Ratio

The output signal-to-noise ratio of a detector based on the test

statistic S is defined to be:
n

( 0 )) (2.3-li)
SN Ee(S)"E(n

As a consequence of condition (B), the mean value theorem (23) may be

applied to obtrin

E(S)- Eo(Sn)= n[E A(Sn) 9=

where 0 < e < 8 . Utilizing this result in Eq. (2.3-4), we have
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+ S NE(Sd 1) -

limi t w n (2.3-5)
n -* 0 (eS n )

which, as a consequence of the continuity of E'(S) at 0 = 0, and conditions

(C), (D) and (Z), can be rewritten es

limit ( ) - e fr (2.3-6)
n -0. CA

Thus, it is seen from Eq. (2.3-6) that the output signal-to-noise ratio

for large sample sizes and vanishing signal-to-noise ratios is proportional

to the input signal-to-noise ratio. The constant of proportionality is

a function of the sample size n and the efficacy K. Again the importance

of the detector efficacy is evident.

The physical justification for the concept of output signal-to-noise

ratio, as defined above, becomes apparent if one studies Fig. 2. It is

observed there that the two patterns, signal absent and signal present,

become more distinguishable as either the distance between their central

locations (mean values) becomes greater or the concentration of their

values around the central locations becomes greater (smaller variances).

It is also apparent that any increase in distinguishability between the

patterns due to increased distance between their central locations will

be nullified by an increase in variance. The same is true for a decrease

in variance if accompanied by a decrease in distance. Hence, it is the

ratio of distance between central locations of the two patterns to the

variance of the signal present pattern that can serve as a measure of the

cdistinguishability of the patterns or detectability of the signal in

noise, in the sense described above. In fact, the output signal-to-noise

ratio, as defined here, is a measure in a given detection problem of the

false dismissal probability for a specified false alarm probability.
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Thus, the output signal-to-noise ratio serves as a qualitative measure

of the detectability of the signal in a given environment utilizing a

specified detector. In particular, for weak signals and large number of

samples, an exact expression of the relation between the probabilities of

false alarm and false dismissal and the output signal-to-noise ratio may

be derived utilizing Eq. (2.3-6) and the performance relation q. (2.3-1).

The functional relation between output sigr.nl-to-noise ratio and false

alarm and false dismissal probabilities is

( > F er 1 (1 - az) + erfr " (1 - V) (2.3-7)

L s mIj
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Chapter 3

NEDIAN DECTOR

-- Introduction

Coincidence detection procedures base their decisions on the presence

or absence of the signal on the following test statistic

n

Sn n
i=1

where y are observations on the input waveform Y(t), and x is the threshold

level. The function c(z) is defined as

c(z) 1, z > 0
(3.1-2)

=0, z<0

The mean and variance of S iunder no-signal conditions are

n

n

Eo[Sn : X Eo[c(Yi - x)] (3.1-3)

Z~ f d F (y)
i=1 x

n

) [1 - Fo (x)

i=l i

n

-1F W
n L 0~X
i

and



25

n

2 1V 2ar 0Sn] f ay[c(Y -41

n

2 Z (1 -F 0(x)][F 0(x)]
n J l

where FO (y) is the probability distribution function of the random variable

Y.

The test statistic F is equal ta a sum of independent, binomially dis-

tributed random variables; hence, it follows from the central limit theorem

(22) that S is asymptotically gaussian under signal and under no-signal

conditions.

For large number of samples, the distribution of Sn, being gaussian,

is completely specified by its mean and variance. In turn, the false

alarm rate of S is completely specified by the distribution of the test

statistic under no-signal conditions. Thus, for an invariant or distribution-

free faise alarm rate, the mean and variance of S under no-signal conditions

must be constant, and independent of the channel statistics. It is seen

from Eqs. (3.1-3) and (3.1-4) that if the threshold level x is chosen as

in previous investigations (14,15,16,17), the mean and variance of the

test statistic S will vary according to the distribution function of the

noise under no-signal conditions. Thus, the false alarm rate of the

coincidence detection procedure will also vary. For the reasons stated

in Chapter 1, the latter is undesirable when the channel statistics are

unknown. A need, therefore, exists for coincidence detection procedures

with invariant or distribution-free false alarm rates.
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A distribution-free coincidence Drocedure results if the threshold

level is chosen to be a specified noise quantile under no-signal conditions.

Thus, if the pth quantile z is chosen as the threshold level, the mean and

variance under no-signal conditions become

n

*%oLSn] 1 F (Z) (3.1-5)
i-l

n

o 2[S] F[-Fz)] (z)] (3.1-6)a 0-sn1 2 a Zp) 0 Fo

i=l P 0

For noise vrith stationary quantile z under no-signal condit".ons, we have

F 0.(z) = p, i = 1, 2, ..., n (3.1-7)

and the mean and variance are known co stants given by

E [S _ (3.1-8)Z) Cl"

oS = p(l - p) (3.1-9)
o n - n

Thus, for this choice of threshold L vel, the distribution of the coincidence

detection procedure test statistic Sn is asymptotica..ly known and inde-

pendent of the chanrel statistics. Hence, the coincidence detection

procedure possesses an invariant or distribution-free false alarm rate.

To utilize the distribution-free coincidence procedures proposed here,

the only information needed concerning the channel statistics is the speci-

fied quantile of the noise under no-signal conditions.

In this chapter, a particular distribution-free coincidence detector is

proposed and investigated in detail. It utilizes the median of the noise

under no-signal conditions as its threshold level - hence the name median
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detector for this coincidence detection procedure. In essence, the median

detector tests for the presence of the signal by testing for a change of the

median of the input waveform Y(t), the assumption being made implicitly

that such a change in median is the result of the presence of the signal.

In the following, the general properties of the median detector test

statistic are obtained. In particular, its efficacy, output signal-to-

noise ratio, and performance relation are obtained. Subsequently, the

median detector is applied to various detection problems of interest and its

performance is evaluated and compared to that of likelihood detectors.

3.2 The Median Detector Test Statistic

The median detector as defined above is based on the fol'owing test

statistic
n

Sn(M) = C(y - M) (3.2-1)

i=l

where the threshold level M is the median of the noise under no-signal

conditions, and the function c(z) is defined in Eq. (3.1-2). Therefore,

the test statistic is operating on the input waveform Y(t) in the same

manner %S the system shown in Fig. 3,

Y.(t) z(t) Half-Wave c(t) c(t )Binary nM
Adder Ideal Sampler Integrator

Limter

M

Fig. 3. Block Diagram of Median Detector
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The median N is subtracted from the data sample function Y(t); the

resulting waveform Z(t) is then applied to an ideal half-wave limiter

the output of which is sampled n times, and the samples averaged to yield

S nM).

The test statistic Sn(M) decides for the presence of the signal by

testing for a difference between the median of the data sample function

and M, the median of the reference or noise only sample function. In

effect, the median M serves as the reference sample function.

Stated explicitly, the conditions on which the operation of the median

detector is based are

(a) the medians of the reference and data sample functions under

no-signal conditions are the same;

(b) the common median M of the reference and data samples under

no-signal conditions is known.

Condition (a) insures that any difference between the reference and data

sample function medians is brought about by the presen e cf the signal.

Condition (b) permits the calculation of the statistic Sn(M). Both

conditions will be met if the noise under no-signal conditions has a station-

ary median and the reference and data samples are obtained from the same

channel. The stationarity of the noise median guarantees that the reference

and data samples obtained from the same channel, hence from the same sto-

chastic process (N(t)) under no-signal (onditibns, will have the same

median. The particular value of the. median can be obtained by taking

measurements for sufficiently long time on the channel before the trans-

missik.n of information commences, so that the true value of the median is

accurately known. This value of the median may be used for nil time



2'9

thereafter since the noise median is stationary.

The disturbance present in every commication channel consists (28) of

an additive disturbance and a multiplicative one, the latter present only

under signal conditions. Thus, the mild restrictions imposed on the noise

under no signal conditions are restrictions on the additive noise only.

No restrictions, whatsoever, on the nature of the multiplicative disturbance

are necessary for the median detector to possess a distribution-free false

alarm rate.

3-3 Median Detector General Properties

The general properties of the median detector will oc obtained for thc

case of channel statistics that are first order statiunary under no-signal

conditions. Thus, as a consequence of the first order stationarity, the

random variables Y ' Yn' representing the amplitude of the data

waveform at the sampling instants tl, t2 ) ... , tn , are identically dis-

tributed with a common distribution F0 (y), under no-signal conditions.

Under signal conditions and in the presence of multiplicative disturbance,

the continuous parameter stochastic process (Y(t)) is not stationary sincc

the signal strength at the receiver is varying with time. Thus, the dis-

tribution funct:ca of Y,, i = 1, 2, ... , n is not the same as that of

Y, J = 1, 2, ..., n, j i. However, we shall assume that the distribution

of Yi, i = 1, 2, ... , n differs from the distribution of Yj, j = 1, 2, ... ,

n, j j i, only through the signal-to-noise ratio parameter 0; i.e., the

distribution of Yi is G e(y) and that of Y is Ge (y). This assumption is

satisfied in many detection problems of interest.

The mean and variance of Sn(M), under no-signal conditions, are given

by Eqs. (3.1-8) and (3.1-9), where in this case
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Fo(M) = -1 (3.3-i)

Therefore the mean and variance are

1

E[Sn (M)] = (3-3-2)
o n

2 ~ 1(33-3)g [Sn(M)] = n

It is seen that the mean and variance, under no-signal conditions, are

known and constant, independent of the channel statistics. Thus, the median

detector false alarm rate, as explained previously, is asymptotically

distrlbution-free.

However, the mean and variance of Sn(M) under signal conditions do

depend on the channel statistics. Hence, the detection probability also

depends on the channel statistics. The mean of S (M) under signal conditions

is given by

iesn ( ))Cf M) ]  (3--4
0 n n i=l

n

ni . dGe(Y)

n

n Z 1 - G (M)1
i=l

n
= I -G (M)

n i

Appiying the mean value theorem (25) we obtain
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(M)-G (M)d G() ON (3.3-5)

GeiM)Go()0 ei d8 e

where 0 < 0 < ' and because of the first order stationarity of the noise

unmdr no-signal conditions G () F0 (M). substituting this result in

q. (3.3- ;, we obtain

E 3. (14 1 -F () (3.3-6)
E[S(M)]1 F(M) 2Z i  e1  (s= 6

n F0 d G %(M)
E(S(M) - 1 ei -

For the weak signal case, Eq. (3.3-6) becomes

E[ sn (M)] = E [S (M) n ) (3.-7)0non n 'i do

SEo[Sn (M)].dO( )  e

i=i

E (Sn(M)] " E d o =  0]

where 0 is the average signal-to-noise ratio

n

n i (33-8)
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The variance of the test statistic Sn(h' under signal cooditions is

n
a 2KSn(M) 2 0,.2 [c(Yi M)] (.3-9)

n i

n

= [(1- G0 (M)] [G0 (M)]
n i2

Utilizing Eq. (3.3-5), we obtain

e2 [ n(M)] SnM)] - \ ni G2(Z)e I d3d e  _-

i=l L

For the weak signal case, this beccmes
2

2 [()) 2 1 (MI d G0 (M)I
a0 [n(M)] = ao n 2 dO S(M]- I (3.5-]i)

where 0 is the mean-square value of the signal-to-noise ratio

n
e2 (3.3-12)

i=l

It is to be noted that for the weak signal case e2 < < 0.

Utilizing Eqs. (3.3-3) and (3.3-7), we obtain the efficacy of Sn(M)
2

K(Sn (M)] = iL'it E a] (3313)
n -. 00 nI

ed Ge(M)=4 dO e 0

The test statistic S n(M), being thoz sum of independent binomially

distributed random -ariables, is asymptoticalLy gaussian under signal

ar, urler no-signal conditions. Thus, it satisfies condition (A).
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Condition (D) is fulfiled in the weak signal case investigated here. The

existence of the efficacy given in Eq. (3.13-13) is the only requirement

for the statistic to satisfy conditions (B), (C) and (E). The efficacy

exists for all continuous parameter stochastic Drocessess with continuous

first order distributions. It is seen from Eq. (3-3-3) that Sn(M)

satisfies condition (F) always.

A test statistic is said to be consistent if, for a specified false

alax-n rate, its detection probability approaches one as the number of

samples increases. Conditions (E) and (F) establish the consistency of

sn(M).

Since the test statistic satisfies conditions (A)-(F), its performance

relation and output signal-to-noise ratio are given by

-2

Ga(M) 0 2 n = 2 erf I (]-a) + erf "I (1-20)] (3.3-14)
S dO 0= 01

and [ 6 In rdG (M) (A3I5( )nL dO e1 0 -

The test statistic efficacy may also be used, as shown in Chapter 2,

to obtain the relative information rate of Sn(M) with respect to a

likelihood statistic. Thus, the efficacy given in Eq. (3.3-13) completely

specifies all of the performance indices of the median detector.

>.4 Applications

In the following, the median detector is applied to specific de-

tection problems, its performance in the problem is evaluated and compared

to that of likelihood detectors applicable to the problems.
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3.4.1 Detection of a Sine Wave of Known Phase
in Additive Noise - General Case

For this general problem, it has been shown, see Eq. (A-3) in Appendix

A, that

d G 6(y)()(341

dO

Thus

K(Sn(M)] = 4 f 2(M) (3.4-2)

The efficacy of the likelihood detector appropriate for the problem is

given by Eq. (B-25) in Appendix B as

k* = 1 (3.4-3)

Therefore, the asymptotic relative efficiency is

ARE Sn M), L*n= 4 f02 (M) (3.4-4)

It is seen frcm Eq. (3.4-4) above that the relative information rate of

the median detector, with respect to the applicable likelihood detector

for this general problem, may be anything from zero to infinity dependirg

on the probability density f0 (y) under no-signal conditions. However,

Hodges and Lehman (29) have shown that for a probability density f (1)o

which is non-i- .easing on either side of its median, the ARE is never

less than 1/3, and this ower bound is attained when f (x) is rectangular.

3.4.2 Detection of a Line Wave of Known Phase tn Additive Gaussian Noise

This p-obiem is a specific case of the previous general dete-ction

problem, wdth f (y) given by Eq. (A-4) as0
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2f ) 0 e_ e- 2 . < y < -(3.4-5)
4-&

thus, using Eq. (3.4-2) we obtain

MIS (M)] 4 f 02 (M) (3.4-6)
n2

2
IT

The asymptotic relative efficiency is obtained, using Eq. (3.4-4), as

MRE * 2 (3.14-7)sn(M), Ln

- 0.637

3.4.3 Detection of a Sine Wave of Known Phase in Additive Gaussian and
Impulse Noise

This problem- also is a specific case of the general problem. Hence,

using Eq. (A-6) in Eqs. (3.4-2) and (3.4-4), we obtain

K[Sn(M)] = a 2 (3.4-8)

2 r(c

and AR E 2 r ( 11-9)

8 E~(M) , L c  F3<
n 1

For c 2, we obtain the asymptotic relative efficiency for gaussian noise

only. This is, as was fouid previously, equal to 0.64. However, for c - 1,

we obtain an asymptotic relative efficiency equal to 2.00; that in, for a

purely exponential density characterizing the additive combination of

impulse and gaussian noises the median detector is twice as efficient as
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the likelihood detector designed under the gaussian assumption. The latter

is a significant result. It points out that in the presence of Additive

gaussian and impulse noise - a cumbination found in many channels (11, 24) -

it is advisable to utilize a median detector rather than a likelihood

detector designed under the likelihood assumption.

3.4.4 Detection of a Sine Wave of Unknown Phase in Additive Gaussian Noise

In this problem we have from Eqs. (A-14) aid (A-a) that

d Ge(y) _ y 2

de - - 2 e 202 <  y <  (4-0)
1 = 0 - 2

and M = 0 by symmetry of f 0 (y). "T.us, using Eq. (3.3-13) we see that

d G8 (M) (5.4-il)K =4 do =0 (--1

=0

and consequently

AREs (i), L* =0 (3.4-12)

nl n

In detecting a sine wave of unknown phase in additive gaussian

noise, we may improve the efficiency of the distribution-free detector

based on the test statistic Sn(M) by proceeding in any of the following

ways. We may discerd the phase information by predetection processing

the incoming waveform, e.g. envelope processing; or, we may change the

specified quantile M to another specified quantile so that the detection

efficiency increases and the detector still remains distribution-free.
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If the distributions are known, then we may choose the threshold so that

we maximize the ARE (16), thus obtaining an optimum coincidence procedure.

However, it must be stressed that the last procedure reqaire3 camplete

knowledge of the first-order distributions. Thus, it does not apply to

the detection problems with which this work is concerned.

3.4.5 Envelope Detection of a Sine Wave in Narrow-Band Geissian Noise

Since the phase of the sine-wave is unknown, we may proceed to

discard the phase information by envelope predetection processing the

input waveform in an effort to improve the information rate of the

detector. In this case, using Eq. (A-19) in Eq. (3.3-13), we obtain

K[S (M)] e4

where M is given by

M 2

2Y 2 e 2W dy
0 C

thus

K[Sn(M)] = o.48 (3.4-15)

From Eq. (B-43) and Eq. (3.4-15) we obtain the asymptotic relative

efficiency of the median detector with respect to the likelihood detector

AREs (M), L* = 0.48 (3.4-16)

n n

Thus, the median detector is approximately half as efficient as the

likelihood detector for this problem.
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3.4-6 Square-Lw Detection of a &in* Wave in Narrow-Band Additive
Gaussian Noise

It is seen from Eq. (A-23) that

d G0(y) -y(3-17)de -ye -  ,y>O(3I-)
d e -0

-0 y<0

Substituting this in Eq. (3.3-15) we obtain the statistic efficacy

K[ S n(M) ] - 4 2 e14 2  (3 .- 18)

where M the median under no-sigaal conditions is given by

M

1 eY dy (3.I4-19)i, f e-

0

thus

X[S n (M)] - 0. 8 (3.4-20)

Using Eq. (3.4-20) and Eq. (B-51) we obtain the asymptotic relative

efficiency

AREs WL 0.48 (3.4-21)

Sn ( n,

It is the same as that obtained by envelope predetection processing the

input waveform.

3.4.7 Envelope Detection of Narrow-Band White Gaussian Signal in Additive

White Gaussian Noise

From Eq. (A-33) we obtain that
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2
d G 2 2je o- e , y> (,.14-22)

de2

-0 y<0

Substituting this in Eq. (3-3-13) we obtain the efficacy K

x. 4 - lie
DN

K = M4 C 'N 2(3.4-25)

4aN

where the median X under no-signal conditions is given by

2

1M 
2

2 y 2 e 2N3

0 "it

thus

K[s T(M)] - o.48 (3.4-25)

Using Eq. (3.4-25) and Eq. (B-62) we obtain the asyMtotic relative

efficiency

ARE S (M), 0" o.4 8  (3.4-26)

Thus, the median detector in approximately half ea efficient as the

likelihood detector for this problem.

3.4.8 Square-Law Det, rtion of Narrow-Band White Gaussian Signal

in Additive White Gaussian Noise

Using Eqs. (A-35), (A-38) in Eq. (3.3-13) we obtain

2M
2

K[S n (M)] = e (3.4-27)
ON
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where the median X is given by

._
M 2

2 f 2 (3.4-28)

o

thus

K[S n(M)] - 0.48 (3.4-29)

Using Eq. (3.4-29) and Eq. (B-64) we obtain the asymptotic relative

efficiency

ARES
n n

It is the same as that obtained by envelope predetection processing the

input waveform.

3.5 Sumary of Results

The median detector was found to possess many important properties.

It was shown that the median detector is distribution-free in the sense

that its false-alarm rate is constant, independent of the channel statistics

as long as the median under no-signal conditions is known. It was also

seen that the multiplicative disturbance does not affect the distribution-

free nature of the median detector. Thus, as long as the non-station-

arity of the channel statistics is confined to the statistics of the

multiplicative disturbance, the distribution-free nature and the structure

of the median detector are not affected. However, the detection proba-

bility of the detector does depend on the channel statistics.

In the case of the coherent detection of a sine wave in additive

gaussian noise and no multiplicative disturbance, the information rate of
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he .median detector was found to be 64% of the information rate of the

ptizum likelihood detector. Or, in terms of the input signal-to-noise

ratio, the optimum detector would require an input signal-to-noise

ratio that is 80% of that required by the median detector 'or the same

probability of error with the same number of samples. Tf the input

waveform i, predetection envelope or square-law processed, then the

information rate cf the median detector is 48% of the information rate

of the optimum likelihood detector. Or, in terme of inpat signal-to-

noise ratio, the likelihood detector would require an input signal-to-

noise ratio that is 70% of that required by the median detector for the

same probaLility of error and same number of samples.

A significant result appears when the channel statistics include

additive disturbance - that is, an additive combination of gaussian

and impulse noise. For this case, the information rate of the median

detector may exceed that of the likelihood detector designed under the

gaussian assumption and used in this problem. In fact, if the para-

meter c of the gaussian and impulse noise distribution is equal to one,

the median detector information rate is twice that of the likelihood

detector. Thus, the likelihood detector iould require twice as many

samples as the median detector to achieve the same error probability

for the same input signal-to-noise ratio. Or, the median detector

now would require a signal-to-noise ratio only 70% of that required

by the likelihood detector for the same information rate and proba-

bility of error.

The results obtained in this chapter concerning the detection of

a sine wave in gaussian noise are plotted in Fig. 4 while those
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concerning the detection of a sire wrve %g gaussidn and impulse noise

".re shown in Fig. 6. The result: pertaining to the detection

Df a stochastic signal in noise axe plotted in Fig. 7- A graphical

comparison of the performances, for various noAse statistics, of the

median detector in the detection of a sine wave of known phase in

additive noise is given in Fig. 6.

From the results obtained in Lh-.s chapter, it is con.!luded that

the use of the median detector entails only a small loss in ef-

ficiency for guassian channel statistics; while in the presence of

impulse noise, the use of the median detector may lead to higher ef-

ficiency depending on the distribution of the gaussian and impalse

noise. In fact, the greater the impulse noise content, the higher

the median detector efficiency. Moreover, the invariint structure

in the phase of multiplicative disturbance,whether stationary or

non-stationary, and the distribution-free nature of the false-alarm

rate of the median detector add greatly to its appeal.
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Chapter 4

4.1 Introduction

The median detector investigated in Chapter 3 tests for the

presence of the signal by testing for a change in median under signal

and under no-signal conditions. To do so, it utilizes a data sauple

which is compai 3d with the median under no-signal conditions, the latter

assumed to be known. Rowever, knowledge of the median under no-signal

conditions is not always forthcoming and the assumption of known median,

in many practical cases, is not justified. Jbr example, the median will

be unknown when the detector is placed in an unknown environment and

immediate operation of the detector is desired. In this situation, the

detector must learn the unknown median while it is operating. The median

detector will also have to go through a learning phase from time to time

when the median is varying rather slowly with time. It is this learning

phase of operation of the median detector that we are concerned with in

this chapter.

In the present chapter, for stationary or at most quasi-stationery

medians, the medi* detector test statistic is modified so that it learns

the unknown median. To do so, the modified test statistic utilizes an

estimator of the median. Conditions under which the modified test

statistic remains distribution-free are obtained, and the learning nature

of the detector based on the modified statistic is investigated. The

learning Jetector is then applied to detection problems to which it is
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applicable, and its performance and learning efficiency are obtained and

compared to those of the comparable likelihood detectors.

4.2 The Modified Test Statistic

The learning median detector is baied on a test statistic that is a

modified version of the median detector test statistic. The modified

statistic is

n

S() m ~~c(Yi - MA) (4.2-1)
i=n

where Mi is an estimate, obtained from the reference waveform N(t), of

the unknowi median of the additive disturbance under no-signal conditions.

The function c(z) was defined previously. The test statistic as defined

above is operating an the input waveforms Y(t) and N(t) in the same

manner as the system shown in Fig. 8.

y(t)4. Z(t) Half-Wave c(t))Adder Ideal Sampler Inar
Limiter Itgao

Mi

Estimator

rig. 8. Block Diagram of L irning Median Detector

The median estimate Mi obtained f.-cv N(t) is first subtracted from

the data sample function Y(t), and the resulting waveform Z(t) is applied
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to an ideal half-wave limiter. The output of this limiter is then sampled

n times, and the samples averaged to yield Sn(M).

The test statistic Sn () uiAizes the reference sample function to
nl

estimate the unknown median under no-signal conditions, the assumption

again being made that the medians of the reference and data samples are

the same under no-signal conditions. In effect, the estimates of the

median serve as the reference sample function for the modified test

s-atistic. The conditions under which the medians will be the same were

discussed in Chapter 3.

In utilizing the modified test statistic, the m reference samples

m
are divided into n groups of E samples each. From each of these n groupsn

an estimate of the unknown median M is obtained. Each of these median

estimates is associated with only one data sample. Thus, the median

estimate Mi is associated with the data sample Yi' In this manner, for

independent reference and data samples, c(Y i - Mi) and c(Y - ) are

independent random variables. The latter results in expressions for the

mean and variance of S (M) under no-signal conditions that aren

distribution-free for a wide class of distribution functions. Neverthe-

less, it must be pointed out that the estimating procedure proposed above

is by no means the most efficient one.

4.2.1 Conditions for Distribution-free Modified Test Statistic

The modified test statistic false-alarm rate will be asymptotically

distribution-free, provided the mean and variance of the test statistic

are distribution-free under no-signal conditions. For channels with

first order statisticq 1hat are stationary or quasi-stationary under
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no-signal conditions, the mean and variance under no-signal conditions

are

n

~Z [c(Y 1 - M (4.2-2)0o[nll n 0
i,-l

n

9- ICo [c(Zi)]

i

n

=n p (zi > o)

n

;~( -F -(O(o

and

0o2 (S n(FM)]" z [1 .... z, (4.2-3)
o n n

where Z = Yi Mi' and Fz(z) is the distribution function of Z under

no-signal conditions. From the above expressions for the mean and

variance, it is seen that a necessary and sufficient condition for the

modified test statistic to be distribution-free is that zero be a

specified quantile of the distribution of Z, regardless of the channel

statistics. A sufficient condition for this to be true is given 'by the

following theorem.

Theorem 4.1

For channels with symetrical first order statistics under no-signal
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conditions, the random variable Z £i i - 1, 2, ... , n, has a median of

zero.

Proof:

The random variable Z was defined above as

z i Yi " Ni (4.2-4)

Thus, the probability density function of Zi given by the integrl.

f zi(z) -f f14(x) go(z + x) dx (4.2-5)

where g0 (y) W/ad fM(x) are, respectively, the probability densities of Yi

W'. M. ; .me.ricUl firs. order c:xanni s--atiLicL, go(y) and the

pr-bab-lit. de.sity f0 (x) A X. a'e symmetricaL. It is well k.own (30)

that for synmetrical densities, the mean and median coincide. Thus, in

the case of sy3-umetrical fo(x), the saml may be chosen as the

estimator of the unknown median. The probability density function of the

sample mean for large number of samples is gaussian with mean equal to

the unknown median M; that is, for reference and data samples with

identical medians under no-signal conditions, both fM(x) and go(y) are

symmetrical about the median 4. Thus, Yi and Mi, being symmetrical

about the same point, have equal means; and Zi, defizyed as the difference

between the two, has a mean of zero. To drove that Zi has also a zero

mediar, it is only necessary to prove that the probability density of Zi

is symmetrical. The random variable may be expressed as
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Z, T, - i (4.2-6)

" (Yi ".- ) - (A, . x)

-U-v

and the probability density of Z is given by

r () - f ( g(z+v) dv (4..2-7)

Vhere the densities fr(v) and go(v) of the randco variables Vi and Ul

respectively, axe even functions. The density f~i(z) =W be vritten

f.(z) J r(v,) go(z+v) dv + J X(v) go(z+v) dy (4.2-8)
"- 0

and
f zi ('z) . fo X(Y) go('zv) d,+ f' fX(v) f 0(-z v) dv (4.2-9)

00
-. 0

f .(-.) go(-z-v) dv + f ,(--) go(-Z-V) d
0 -

f,4(v) go(z+v) dv + f ,(v) go(z+v) dw

hsf (z)

It is concluded from Eq,. (4.2-9) that fzi(z) is symetrical about zero;

thus, it has a median of sero. This oae~letes the proof.

The above theorem establishes the distribution-free nature of the

modified test statistic for a vide class of ehannels, namely the class

with symetrical first order statistics under no-signal conditions.

For symmetrical first order statistics, the mean and variance under

no-signal conditions are



53

E o(S (1)] -1 - ((0.z-o)

and

% 2[sn(R)] = F n()1 ~O](.-l

Thus, the modified test statistic has asyuptotically the sam distribution

under no-signal conditions as the median detector test statistic.

4.2.2 The Modified Test Statistic Efficacy

The mean and variance of S ( ) under signal conditions are
n

nZS[S (A) .1 y E I [c(i ) (42-12)e n n M

n
A

= - I (Yi > Hi)

n

1 d FM(x) d C, (y)

1=1 -a X
n

in Z f ril - G. (x)] d FM(x)

i=1 -O
n

[3i- Goi(x) d FM(x)]

i-i

n

n P(qe)
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and

n

7 0S(A)] =1 Z 1 ,c(Yi-A) (14 2-13)
i-ii

n-I G (x) dF,(x)] -1 G,, (x) d.(x)]

n

n. L P(e) [l - p(e) ]

Applying the mean value theorem (23) to G0 (y), we obtain in the weak

signal case

Go (y) - G (y) = . (4.2-14) Mo de 0 0

or, since GO(y ) - F0 (y), we have

9 1(y )  d() eq d (42-15)

Substituting this in Eqs. (4.2-12) and (4.2-13) we obtain

1n n rd C

E9(S(M)1 *'p ZL f (x)dFm(x)1i- d86 dF,(x)j

" Sn(M)] - [f ) d P(x) (42-16) e

a

and

-5- •• • • •
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n n

a6 2 S() X. J'G (x) dl.(x) X . ~Go(xW d&.(x)]

n

~2 L !.(x) dEM(x)][1 %JWO dfM(X)I 42-
n '

dG. (x)=1
i dG x)1() 2

128 2 d ; d. ' xNnn-J

2 [()] - O n d d (x)J

where e and were defined in Chapter 3, respective2-., -- !-:- one

mcan-zquare vcalue of the signal-to-noise ratio 0.

Utilizing Eqs. (4.2-11) and (4.2-16), Ve obtain the efficacy of Sn (k)

2
K( . ed (X) (4.2-18)

It will be shown in the next section that all of the performance

indices of the detector utilizing the modified test statiatL- are

completely specified by the modified test statistic efficacy. Thus, the

learning nature of te detector may be examined by investigating the

convergence properties of the efi".cacy. In the limit of large number of

estimating samples, the density fM(x) of the median estimator tends to

an inpulse function

limit fM(x) - limit N(MP OX (4.2-19)

n n

.8(x - M)
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In the same liait, the efficacy becomes

imit K(M). limit 12D 1 ,()(.-0

M . afx a Fxxj(1,~O
n n

= - (x-M)
4 dG 0 (W 0 =0 2

r dG0 (M) 2

= 1 dO 0=0L

- K(K)

It is seen from Eq. (4.2-20) that the performance of the detector based

on the modified statistic improves as the number of estimating samples

increases end, in the limit, the modified median detector iz as

efficient as the median detector. Thus, the modified detector consti-

tutes a learning system (13) with respect to an unknown, stationary or

qivasi-stationary median - hence, the name "learning median detector"

for the modified detector.

4.2.3 Performance Indices

The modified test statistic is equal to a am of i.dependcnt

binomially distrIbuted random variables; hence it follows from the

central limit theorem (22) that 8n(M) is asymptotically gaussian under

signal and urler no-signal conditions. The modified statistic then

satisfies condition (A). Condition (D) is fulfilled in the weak signal

case investig~ted here. In the weak signal case, the existence of the
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efficacy is the only requirement for the statistic to satisfy conditions

(B), (C) and (E). The efficacy, given by Eq. (4.2-18), will exist if
dGe(x) e

exists that is, if the median detector efficacy exists.

The latter exists for continuous parameter, contnuous density functions

g0(x). It is seen from Eq. (4.2-11) that S (MA) satisfies condition (F)8 n

always. The conditions (E) and (F) establish the consistency of S().

Since the modified statistic satisfies all of conditions (A)-(F),

its performance relation and output signal-to-noise ratio are given b'r-

4[d 8=odFM(x 2 n - 2[erf-l(1-2o) + erfr(1-21) (4.2-21)

ond

N [f ~d 0(0x)-x)

The efficacy may also be used, as shown in Chapter 2, to obtain the

asymptotic re'!ativie efficiency of 8n(A) with respect to a likelihood

s.ati tic. Thus, the efficac,- K(k) ccmpletely specifies all of the

performance indices of the learning median detector for symuetrical

first crder channel statistics.

'4 ) 2.L atns

In the following, the learning median detector is applied to detec-

tion problems with synmetrical first order distributions for which it

remains distribution-free.

4.3.1 Detection of a Sine Wave in Additive Noise

For this general problem we have



58

d G 1(y) fo(y) (4.3-1)

and using this in F;. (4.2-18) we obtein

K(A) = 4 f W(x) d Fxkx) (4.3-2)

4.3.2 Detection of a Sine Wave in Additive Gaussian Noise

Iis is a specific case of the previous detection problem where
2

1 x

fo 0 .!_ e  2 < < (4.3-3)

Thus, the efficacy is

A 2
K(M) =4 [j fO(x) fM(x) dxj (4.3-4)

=4 [ -l- e ~ x

2 1

2 1

x (i + n)

Using Eqs. (3.4-6) and (4.3-4) we obtain the asymptotic relative effi-

ciency of the learning median detector with respect to the median

detector. The ARE is

(E1 (4.3-5)ARS n W)'s n(M) (i+ n)
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The asymptotic relative efficiency of the learning median detector vith

respect to the learning optiow likelihood detector is obtained using

Eqs. (4.3-4) and (B-18). It is given by

AMs  A A 2 (4.3-6)

The above result indicates that the learning median and likelihood

detectors, both utilizing the sample mean as an estimator of the unknown

median, are equally efficient in their learning the median, in the case

of gaussian statistics.

4.3.3 Detection of a Sine Wave in Additive Combination of Gaussian and

Impulse Noise

This is also a specific case of the general problem discussed in

Section 4.3.1. Fbr the present problem fo(x) is

f 0 e -4 < y < (4. 3-7 )

The efficacy of the learning median detector for large number of

estimating samples _ is given by
n

K~k)= 4 IYMx~i(4.3-8)
- 2 2

xFr- ___

= 2 e - ere (]

= 2 e 1 erf(& m
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Using Eqsi. (3 .4-8) and (4.3-8) we obtain the asymptotic relative efficiency

of the learning median detector with respect to the median detector for

known median. The ARE is given by

2 n ]

The asymptotic relative efficiency of tre learning median detector, with

respect to the learning likelihood detector designed under the gaussian

assumption, is obtained utilizing Eqs. (4.3-8) and Eq. (B-18). The ARE

is

n 1 - erf

n [1 + mlR

The above expression for ARE indicates that the learning median detector

and learning likelihood detector, both utilizing the sample mean as an

estimator of the unknown median, are not equally efficient in learning

the median of a ccmbination of gaussian and impulse noise. Specifically,

it is seen that the learning likelihood detector is more efficient in

learning the unknown median than the learning median detector.

4.4 Summary of Results

In this chapter, the statistic on which the median detector is

based was modified so that it learns tne unknown median. The detector

based on the modified statistic was shown to be a learning system with

respect to the unknown median, since its performance improves and

converges to the performance of the median detector with known median,
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as the learning time increas-!. The learning median detector was also

shown to be distribution-free for a ide class of detection problems

namely, the class with symmetrical first order distributions.

The learr-.ng median detector was applied to the detection of a

sine wave of known phase in gaussian noise and also in a combination of

gaussian and impulse noise. In the gaussian case, the learning median

detector and the learning optimum likelihood detector are equally

efficient in learning the unknown median. The efficacy of the learning

median detector converges rapidly with increasing number of estimating

samples to the efficacy of the median detector with known median.

These results are presented in Fig. 9. When impulse noise is present

in the channel the learning median detector is not as efficient as the

learning likelihood detector in learning the unknown median. In this

case the learning median detector efficacy does not converge to the

median detector efficacy as rapidly as in the detection problem with

gaussian noise only. However, in the presence of impulse noise, the

information efficiency of the learning median detector is greater than

that of the learning likelihood detector even for a moderate number of

estimating samples. These results are presented in Fig. 10. A graphical

presentation of the functional relation between the learning median

detector probability of error and input signal-to-noise ratio is given

in Fig. 11 for the case of gaussian channel statistics and in Fig. 12

for a combination of impulse and gaussian channel statistics.

From the results obtained in this chapter, it is concluded that use

of the learning median detector instead of the learning likelihood

detector entails only a small loss of deteLtion ef.ciency for gaussian
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channel statistics; while if impulse noise is present in the channel,

use of the learning median detector results in higher detection efficiency.

Moreover, the learning median detector is distribution-free for symetrical

first order distributions, hence applicable even when the form of the;

distributions is unknown.
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Chapter 5

ADAPTIVE MEDIAN DETECTOR

5.1 Introduction

The distribution-free coincidence detection procedures investigated

in the previous chapters test for the presence of the signal by testing

for a change in median under signal and under no-signal conditions. In

particular, the median detector is applicable to the detection problem

when the median under no-signal conditions is stationary or at most quasi-

stationary, and it requires that the value of the median under no-signal

conditions b? known in order that its false-alarm rate remain distribution-

free. The learning median detector does not require knowledge of the

median, instead it utilizes an estimate of the unknown median for station-

ary or at most quasi-stationary medians. However, the learning median

detector remains distribution-free only for the class of detection problems

with symmetrical first order statistics under no-signal conditions. Thus,

usa of the learning median detector instead of the median detector is,

in effect, equivalent to replacing the restriction of known medians by

the restriction of symmetrical first order channel statistics. To smma-

rize, the median and learning median detectors remain distribution-free

only when a) the median under no-signal conditions is stationary or at

most quasi-stationary and b) when the median is known or when the first

order channel statistics are symmetrical under no-signal conditions.

However, there exist detection problems in which the location parameters,

in particular the median, are non-stationary and, moreover, their time-



681

jariations are unknown. In addition, not all detection problems have j
symmetrical first order statistics. Hence, the need exists for a dis-

tribution-free detection procedure applicable ever when the noise meacans i
are unknown and non-stationary and one that remains dastribution-free I
for a wider class of detection problems.

In the present chapter, a modified version of the median detector I
that is adaptive to rapid changes in the median under no-signal conditions

is proposed and investigated. The conditions under which the adaptive i
median detector remains distribution-free are obtained. It is found that

the adapti, e median detector remains diatribuion-free for a much wider

class of detection problems than the median detector or the learning j
median detector. The adaptive median detector is then applied to various

detection problems of interest, and its performance is obtained and i
compared to that of the other distribution-free detectors and to that

of comparable likelihood detectors.

I
5.2 The Modified Test Statistic I

The adaptive median detector is based on a modified version of the

median detector test statistic. The modified test statistic is I

s=~ n -~ (5.2-L)
n n

Sn =n c(yi  xi)(.-)

i=l I
where yi and xi, i = 1, 2, ... , n, are the values of the data and

reference samples obtained, respectively, from Y(t) and N(t). The test J
statistic as defined above is operating on the input waveforms Y(t) and

I
I
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N(t) in the same manner as the system in Fig. 13.

YM Hlf-Wave C(tid 8sn
Y(t) Adder Ideal Sampler Binary

Limiter Integration

t)

Fig. 13. Block Diagram of Adaptive Median Detector

The reference 3ample function N(t) is first subtracted from the data

sample function Y(t), and the resulting waveform Z(t) is then applied

to an ideal half-wave limiter. The output of the limiter is then

sampled and the samples averaged to yield Sn .

Application of the adaptive median detector requires, as did the

median detectors discussed previously, that the members of each sample

pair (Y V Xi) have identical medians. This will be true, for instance,

if the additive disturoances in the reference and data channels have

identical first order statistics. However, for non-stationary channel

statistics, the first order statistics, and hence the median, may vary

fron sample pair to sample pair.

5.2.1 Conditions for Distribution-free Modified Test Statistic

The modified test statistic false-alarm rate will be asymptotically

distribution-free, provided the mean and variance of the test statistic

are distribut' on-free under no-signal conditions. The mean and variance

under no-signai ,idiions are
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Es n  - o[(-x)] (5.2-2)

1,,1

n

= ~ Z E o[c(Z )]
i-i

n
"~ Z P z > o]

i =1

n

I Z -1, (0)]1
=1

and
n

O[s] = [ n 2 (1 - Fz (O)]HFz (0)] (5.2-3)

n i i

whereZ = Y " X,, and FZi is the distribution of Zi under no-signal

conditions. From the above expressions for themean and variance, it is

noted that a necessary and sufficient condition for the modified test

statistic to be distribution-free is that zero be a specified quantile of

the distribution of Zi, i 1 1, 2, ... , n, regardless of the channel

statistics. In particular, if zero is the median of Zi, then the distri-

bution of Sn is the same as the distribution of S (M) and S (M), undern n

no-signal conditions. A sufficient condition for Zi to have a zero median

is given by the following theorem

Theorem 5.1

For detection problems with reference and data channels possessing

symetrical first order statistics under no-signal conditions, the random
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variable Zi, i = 1, 2, ... , n, has zero median.

Proof:

The proof is the same as tuat of Theorem 4.1, where one substitutes

f (x), the distribution of Xi, i = 1. 2, ... , n, under no-signal conditions,
0

in place of f (x).

The above theorem establishes the distribution-free nature of the

adaptive median detector false-alarm rate for the class of detection

problems with symmetrical first-order statistics and otherwise arbitrary

statistics. In particular, the distribution of Yi may differ from that

of Xi . A wider, and perhaps a more practical, class of detection problems

for which the adaptive median detector remains distribution-free is given

by the following theorem.

Theorem 5.2

For detection problems with reference and data channels possessing

identical first order statistics under no-signal conditions, the randon

'.ariable Zi, i - 1, 2, ... , n, has zero medien.

Proof:

Under the conditions of the theorem, f0 (x) - goi (x), thus the value

at zero of the distribution of Zi is

Fz (O) = P(Zi > 0) (5.2-4)

" P(Yi > xi)

ff dF 0 (x) d G0 (y
-~x
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- [ 1- F (x)) d F o )

1
2

This completes the proof.

It is seen that theorem 5.2 establishes the distribution-free

nature of the adaptive median detector test statistic for the class Df

detection problems with identical reference and data channel first

order statistics.

Thus, it is seen from the above theorems that regardless of whether

the channel statistics are stationary or non-stationary, as long as the

first order statistics of the reference and data channels are either

symmetrical or identical under no-signal conditions, the adaptive

median detector false-alarm rate is distribution-free. The mean and

variance under no-signal conditions are

E [S I -1 - Fi(o)] (5.2-5)on n l

i ii

n = 1 i ii=l

1
4 nl-

5.2.2 The Modified Test Statistic Efficacy

The efficacy of the modified statistic will be obtained for the
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class of detection problems with first order stationary statistics,

under no-signal conditions. Under signal conditions, it will be

assumed that the distribution of Yi differs from the distribution of

y j i, only through the signal-to-noise ratio. This assumption

is satisfied in many detection problems of interest.

For this class of detection problems, the mean and variance under

signal conditions are

n

E [c(Yi - iWi (5.2-7)
i=1

nX P[Yi >  )

n Lxo

1= 2/ f 0(x)]F 0 X
X f (1 -G x)d Fo(x)
i-l - =0

1 (l G (x) d Fo(x)]

i-n i" .8

i =1
n

._T P(Oi)

i=l

and
n

a 2e(Sn a 2 [c(Y i - xi)J (5.2-8)

11

12 L P(Bi)[l p- l)

n i

Proceeding as in Chapter 4, we obtain, for the weak signal case and
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data and reference channels with identical first order statistics under

no-signal conditions, that the mean and variance under signal conditions

are

E[ S] [] d F (xj (5.2-9)

and

a- S C SdGO d Fo(x) 2(5.2-10)

where 0 and e are, respectively, the mean and mean-square values of the

signal-to-noise ratio.

Utilizing Eqs. (5.2-6) and (5-2-9), we obtain the efficacy of Sn

K - " jW d Fo(x) (5.2-1)

It is shown in the following section that the performance indices

are completely specified by the efficacy. Thus, the adaptive nature of the

detector may be established by observing the behavior of the efficacy

with increasing number of reference samples and fixed number of data

samples. It is seen, from Eq. (5.2-11), that the efficacy remains fixed

under the above conditions; therefore, the detector is indeed adaptive

with respect to an unknown median (13) - hence, the name "adaptive

detector" for the modified detectcr.

5.2.3 Performance Indices

By applying the central limit theorem to Sn, it is seen that the
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test statistic satisfies condition (A). Condition (D) is fulfilled

in the weak signal case investigated here. Eq. (5.2-6) reveals that

S satisfies condition (F). In the weak signal case and under the con-

ditions for which the efficacy given by Eq. (5.2-11) was derived, the

existence of the efficacy insures that the test statistic satisfies
d G W

conditions (B), (C) and (E). The efficacy will exist if d' o

exists - that is, if the median detector efficacy exists. This

can be shown as follows. If the median detector efficacy exists, then
d Ge)

0 exists, hence

d G(x)I < A 
(52-1)

dO 9

where A is a finite number. Thus,

Km(- f dO 9-0 d Fo() 12 (5.2-13)

< f[ A d Fo0(x)] 2

<14 A2

and the adaptive median detector efficacy exists also.

Since the modified statistic satisfies all of conditions (A)-(F),

its performance relation and output signal-to-noise ratio for the weak

signal case and data and reference channels with identical, stationary

first order statistics, under no-signal conditions, are given by
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I

d GG(x). 1 21 -1 2
4 Fo() e2[n erf-1 (1-2ax) + erf- (l-23)

(5.2-14)

and

rs N ~ r I GO()
~=2 e d Fo(X) (5.2-15)NdO 0-o 0

The efficacy may also be used, as shown in Chapter 2, tj cbta-,n the

asymptotic relative effi, 4ency of S with respect to other detectors.n

Thus, the efficacy K completely specifies all of the performance indices

of the adaptive median detector for the conditions for which the efficacy

given in Eq. (5.2-11) is applicable.

5.5 Applications

In the following, the median detector is applied to specific detection

problems; its performance in the problems is evaluated and compared to

that of other distributicn-free detectors and to that of comparable likeli-

hood detectors.

5.3.1 Detection of a Sine Wave of Known Phase in Additive Noise-Gencral
Case

For this general detection problem we have

d G O- f(X) (5,5-1)
dO

8=0

and using this in Eq. (5.2-11) we obtain
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rf 12

K 4 If fo2(X) dx (5.3-2)

The efficacy- o' the likelihood detector, appropriate to the problem, is

i; n oy Eq. (B-53) as

K ~(5-33)

Thus, the asymptotic relative efficiency of the adaptive median detector

with respect to the comparable likelihood detector is

ARE SL )e [ f f 02 (x) dx 2(534

Pitman (29) has shown that the lowest possible value of the ab'.ve

integral squsaed is equal to 9/125. Thus, for this general problem,

the lower bound of the adaptive median detector efficacy is

K n 0.288 (5.3-5)
min.

and the lower bound of the asymptotic relative efficiency is

AREs ,*- 0.576 (5.3-6)
nS n

The asymptotic relative efficiency may be anything from the minimum

giien above to infinity, depending on f0 (X).

5.3.2 Detection of a Sine Wave of Known Phase in Additive Gaussian Noise

This problem is a specific case of the previous general detection

problem , with f (x) given by Eq. (A-4). Utilizing Eq. (A-4) in Eq.

(5.3-2), we obtain
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2 2

K 4= ~Le dxJ (5.3-7)

Using Eqs. (5.3-7) and (5.3-3) we obtain the asymptotic relative efficiency

of the adaptive median detector with respect to the adaptive optimum

likelihood detector. The ARE is

ARE 2 (5.3-8)
S , L n I

The asymptotic relative efficiency of the adaptive median detector with

respect to the median detector is obtained using Eqs. (5.3-7) and (3.4-6).

It is given by

ARE =1 (5.3-9)Sn s n ) 2

The asymptotic relative efficiency of the adaptive median detector with

respect to the learning median detector is derived using Eqs. (5.3-7)

and (4.3-4). The ARE is

ARE, (M) = + (5.3-10)

It is seen from Eq. (5.2-24) that use of the adaptive median detector

instead of the median detector results in reduction of the infc-'mation

rate by one-half. Use of the adaptive median detector instead of the

learning median detector entails a loss in information rate even for

a small number of estima;ing samples, such as two or three. For esti-

mating sample sizes greater than ten, the informntion rate is almost

helved.
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5.5-3 Detection of a Sine Wave of Known Phase in Additive Gaussian
and Impulse Noise

This problem also is a specific case of the general problem. Thus,

using Eq. (A-6) in Eqs. (5.3-2) and (5.3-4), ye obtain for c - 1

m -2

0

1
2

and

ARE Sn'* = l (5.3-12)
n ,L

The asymptotic relative efficiencies of the adaptive median detector

with respect to the median and learning median detectors are obtained

utilizing Eq. (5.3-u) and Zqs. (3.4-8) and (4-.38), reppectively. The

ARE's, for c - 1, are

ARE 1 (5.3-13)
Sn S (M)

and

ARESnS() e [ 1 - erf a! (5.3-14)

An examination of the above symptotic relative efficiencies reveals that

in the case of gaussian and impulse noise, the adaptive median detector

is as efficient as the comparable likelihood detector. However, the

adaptive median detector information rate is only 1/4 that of the median

detector. Even for smaj.1 estimating sample sizes, the information rate

cf thc adaptLive median detector is smaller than that of the learning median
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detector.

5.3.4 Detection of a Sine Wave of Unknown Phase in Additive Gausaian
Noise

Using Eq. (A-14) in Eq. (5.2-11), we obtain

K 4j[ F d G 0(x) I d F OWx] 2 (.-5

Lj dO I 0

= 4[ x 0 (0, r) dx] 2

=0

The couents made in Chapter 3 regarding this problem are applicable

here also.

5.3.5 Envelope Detection of a Sine Wave in Narrow-Band Gaussian Noise

Using Eq. (A-19) in Eq. (5.2-11), we obtain

2x
-- 2 2

K ~ ~ dx][ , (5.3-16)

0

- 0.25

Using LqzS. (5.3-16) and (3.4-15), we obtain the asymptotic relative

efficiency of the adaptive median detector with respect to the median

detector. The ARE is

ARESs n(M) = 0.52 (5.3-17)

The asymptotic relative efficiency of the adaptive median detector with
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respect to the ccmparable likelihood detector is obtained using Eqs.

(5.3-16) and (B-48). The ARE is

ARE S = 1 (5.3-18)
nn

5.3.6 Square-Law Detection of a Sine Wave in Narrow-Band Additive

Gaussian Noise

Using Eq. (A-23) in Eq. (5.2-u), we obtain

G2

K f y e_21dy] (5.3-19)

0

= 0.25

and the asymptotic relative efficiencies are as in the previous problem.

5.4 Summary of Results

In this chapter, a modified version of the median detector that

is adaptive to an unknown stationary :r non-stationary median was pro-

posed and investigated. The conditions under which the adaptive median

detector remains distribution-free were also obtained. It was shown

that the adaptive median detector remains distribution-free for two

wide classes of detection problems. Specifically, the adaptive median

detector false-alarm rate remains distribution-free for all detection

problems with synmetrical first-order statistics under no-signal

conditions. It also remains distribution-free for all detection problems

with identical first-order reference and data channel statistics, under

no-signal conditions.

The adaptive median detector was applied to the detection of a sine
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wave in additive noise, and its performance in the problem investigated.

The results of this investigation s. presented in Table 1.

Table 1

Performance of Adaptive Median Detector in Detecting

a Sine Wave in Additive Noise

Sine Wave of Known Phase 3ine Wave of Unknown Phase

Gaussian Noise
IT

Lower c = 2 c = 1 Predetection No Predetection
Bound Processing { Processing

K o.288 o.318 0.500 0.250 0

ARESnLn 0.576 0.637 1.000 1.000 0

ARESn, sn(M) 0.500 0.250 0.520

AR 1-e (l;;n ! 'e 1-)'
Sn, sn(M) 2 (e [ .1) I

An examination of the above table reveals that the adaptive median

detector is highly efficient for the detection of a sine-wave in

additive noise of unknown median. Specifically, the adaptive median

letfctor information rate is never less than '7.6% of the information

2,., r nown :opasle n usianoi t anector. .h tq: )f ,-,,e

:ave ."known phase and guassian noise) the adaptive median detector
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information rate is 63.7% of that of the optimum likelihood detector.

However, when the noise is a combination of impulse and gaussian noise,

the adaptive median detector information rate is equal to the information

rate of the comparable likelihood detector. For the detection problem

of a sine wave of unknown phase in guassian noise and with predetection

processing of the input waveform, the adaptive median detector information

rate is equal to that of the adaptive "optimum" likelihood detector,

It is also secn from Table I that the adaptive median detector is

less efficient than either the median detector or the learning median

detector. This, however, is expected since the median detector requires

and uses knowledge about the channel statistics, namely the value of the

median of the additive noise, that the adaptive median detector does

not require and does not use. The learning median detector, although

it does not require this additional knowledge of the channel statistics,

does require and utilize more reference samples than the adaptive median

detector.

In Figs& 7.4 &nd 15, the probability of error of the adaptive median

detector is plotted vs. the input signal-to-noise ratio for all the

detection problems investigated in this chapter.

From the results obtained in this chapter, it is concluded that use

of the adaptive median detector instead of an adaptive likelihood detector

entails either a small loss of detection efficiency or none at all.

Moreover, the adaptive median detector is distribution-free for wide

classes of detection problems, hence applicable even when the form of the

distributions is unknown.
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Chapter 6

THE T-DETECTOR

6.1 Introduction

In this chapter, a distribution-free detector of stochastic

signals in noise is proposed and investigated. This is based on

a test statistic that tests for the presence of the signal by

testing for a difference in variance between the reference and

data samples. The test statistic is the so-cLUed T-statistic-

hence the name "T-detector" for the distribution-free detector

that utilizes it. In the following, the general properties of the

T-statistic are given and its efficacy, output signal-to-noise

ratio, and performance relation are obtained. Subsequently, the

T-detector is applied to the detection of a gaussian signal in

gaussian noise, and its performance is evaluated and compared

to that of the optimum detector.

6.2 The T 3tatistic

The T-_etctor is based on the T-statistic first proposed

by Sukhatme (31) and defined as

n m

S*(Yi'xj) (6.2-1)

i=l J=l

where
0 < xj < Yi

* (Yi' xj)-- i, if

< x 0

= 0, otherwise
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Application of the T-statistic to the detection proble.i is based

on the assumption that the variances of the reference and data simples

are the same under no-sigma conditions. This will be true,. for instance,

if the additive disturbances in the reference and data channe,s have

identical first order statistics under no-signal conditions. In this

investigation, the above condition on the first order statistics will

be assumed. Moreover, the reference and data channel first order

statistics will be assumed stationary or at most quasi-stationary. Thus,

the random variables Yiy i = 1, 2, ... , n will have identical first

order distribution functions, as will the random variables X, J = 1,2, ...,

m.

6.2.1 Conditions for Distribution-free Test Statistic

The T-statistic is a modified version of the Wilcoxon-Mann-Whitney

(31) statistic. Mann and Whitney proved (4) the asymptoti- nrumality

of the Wilcoxon statistic under no-signal conditions and Lehman proved

it (4) under signal conditions. Utilizing these results, it can be

shown that the T-statistic is asymptotically normally distributed under

signal and under no-signal nonditions. Thus, the T-statistic false-

alarm rate will be asymptotically distribution-free if its mean and

variance are distribution-free under no-signal conditions. The mean

and variance under ro-signal conditions are (31)

00

E[T = f [ - F (x)] d F(X) + f Fo(x) d Fo(x) (6.2-2)
0 0

0 -'a
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-Fo() - F2o I +iF0(I

0 0 -1

-F 2(o) (0) + 1
0 0 2

and

0

02 Mn m F 0dF + (6.23

o
0 0

+(n (i - F2 + 12 +F 2

f 0 0 0

0 -

+ (r f F "2 d F f dF 0 + +

(I--)

o0

(dm + n --inf F &F -f F dF}]

0 cc

1 r F (1 - mr n) F0(o) + (m + 2n 3) F 02(o) +
mn L0

+(i-n) F 0 ) n - m

where F 0x) is the distribution of the reference and data samples

0o

under no-signal1 conditions. From the above expressions, it is seen

that a necessary and sufficient condition fo~r the T-statistic false-

alarm rate to be distribution-free is that zero be a specified

quantile of the distribution F 0(x), regardless of the channel

statistics. Thus, the T-statistic false-alarm rate will be distri-

bution-free for the class of distribution functions F (x) with zero0
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median. For t..o.e cistribution functions -_::. nL.n-zero medians, the

medians may bt subtracted out from the incoming reference and data sample

functions so that samples obtained from the modified sample functions

have zero median. In the latter case, the T-statistic becomes

T XI)- (Yi 'j (6--4

i-I J-1

where

Yi y - (6.--5)

x x -N

II

and N and N are th medians of the data and reference saimples under

no-signal conditions. Thus, Y, i - 1, 2, ... , n and Yj, 3 - 1, 2, ... , m

have zero medians.

To summarize, the T-statistic false-alarm rate will be distribution-

free a) for the class of detection problems with zero medians and b) for

the class of detection problems with non-zero medians provided these

medians are known. With regard to the latter class of detection problems,

it must be pointed out that there exists a subclass that does not require

knowledge of the medians under no-signal conditions. This is the class

of detection problems with symmetrical first-order statistics under no-

signal conditions. The mean and median for this class of problems

coincide. Thus, the value of the non-zero medians is not required

since the medians can be made zero by subjecting the reference and data

channel sample functions to capacitive filtering prior to their
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examination by the T-detector.

For the case of input reference and data waveforms with zero

medians, the mean and variance of the T-statistic under no-signal

conditions, obtained from Eqs. (6.2-2) and (6.2-3), are

I [T (J4N)] (6.2-6)
0 Mn

and

a2 [ =()] m+n+7 (6.2-7)
a0 [Tmn)J 8

for m > > n > > 7

6.2.2 The T-Statistic Efficacy

For stationary or quasi-stationary first-order statistics under

signal and under no-signAl conditions and for identical reference and

data channel first-order statistics under no-signal conditions, "he

T-statistic mean and variance under signal conditions are (31)

00 0

E rT (MN)] f [1 - G(x)] dFWX) + f %(x) d(X) (6-2-8)
0 . O

and c 0

2 (T 1- F ()d F (x)d X + (6.2-9)

0 00m

00 0
+ (n-1) U [1 - G O(x)] 2 F (W + f G 0 (x) dF 0(x )I +

0 - 0
00 

00+ (n-i)~ F ~ 2 (x) d Gx W j F (x) dG Wx +

00 ~00

-(m + n- ) f F(x) dGO(x)- j  Fo(x) dG(x)}J

0 -O
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Applying the mean value theorem (23) to G9 (y), we obtain for the weak

rigna case

Ge(y) - Go(y) - e dG(y) (6.2-10)

or, since Go (y) - Fo(y), we have

G(y) - Fd(y) d [ d (6.2-11)

Substituting this in Eq. (6.2-8) we obtain

do 0

E9(T(M.,)if) f [1 - F (x)) d F (x) + f F (x) d.F (W +

0

0f d G ( X ) d F w0 0 d Wd ( x
f dO 9-0 ~ 0( -f 7d -0-(x 0F

no 0x)
=0 dG9(xW

E o[T Mn (MN)] + of d e.oFo(x) -

.a dG 0 d)O
d 0 (x)] (6.2-12)

0

Using Eqs. (6.2-7) and (6.2-12), we obtain the efficacy of the

T-statistic for m > > n. This is

o 0 (x dG (x 2
K(M,)N) -48 i d()(X) "f dO do(x )]

0 9-0 0 -0

(6.2-13)

6.2.3 Performance Indices

As stated previously, the T-statistic is asymptotically normally
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distributed under signal and under no-signal conditiofs; hence, it

satisfies condition (A). Condition (Dl) is fulfilled in the weak signal

case investigated here. Eq. (6."-7) reveals that TMn(MN) satisfied

condition (F). In the weak signal case and under the conditions for

which the efficacy given by Eq. (6.2-13) was derived, the existence

of the efficacy insures that the test statistic satisfies conditions

(B), (C) and (E). The efficacyill exist if exists.dG 10-0

The latter becomes apparent from an examination of Eq. (62-13).
Ge 0

If de - exists, then the test statistic satisfies all of

conditions (A)-(F) ' the weak'iignal case. Hence, for data and

reference channels with first-order statistics identical under no-

signal conditions and stationary or quai-stationary both under signal

and under no-signal conditions, the T-statistic performance relation

and output signal-to-noi-e ratio are given by

0 df,8(W dG x) 24d9 OodF xW)- dO 00dF xW fn-

2

2 [ erf' (l-12a) + erf-1 (2)] (6.2-14)

and 0

)~'4f d dF~x WJ dG- W .0
cc 0. 0 0 00

(6.2-15)

The- efficacy may also be used to obtain the asymptotic relative

efficiency of Tmn(MN) with respect to other statistics. Thus, the

efficacy specifies all of the performance indices of the T-detector

for the conditions under which the efficacy given in Eq. (6.2-13)
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is applicable.

6.3 Applications

In the following, the T-detector is applied to the detection of a

gaussian signal in gaussian noise; its performance is evaluated and

ccupared to the performance in the same problem of the optimmI likeli-

hood detector. Results concerning the asymptotic relative efficiency

of the T-detector with respect to a particular likelihood detector, in

the general problem of scalar alternatives, are also given.

6.3.1 Detection of Narrow-Band White Gaussian Signal in Additive White

Gaussian Noise

Using Eqs. (A-25) and (A-28) in Eq. (6.2-13) we obtain the T-

statistic efficacy. This is

w 0 2

K(MN) -48 [ 02(x) dx f 02(x) dx] (6.3-1)

0 -

2

Using Eqs. (6.3.1) and (B-59) we obtain the asymptotic relative efficiency

of the T-detector with respect to the optimum likelihood detector. The

ARE is

AR ' *uo.61 (63-2)

6.3.2 T-statistic Performance in the General Problem of Scalar

Alternatives

The problem of scalar alternatives is one with distributions Fo(x)

and Ge(x), under the hypothesis and under the alternative, respectively,



related as follows

G0(x) - Fo(9 x) (6.3-3)

Sukhatme (31) has obtained in general the asymptotic relative efficiency

of the T-statistic with respect to the variance-ratio F-test, a likelihood

statistic optimum for gaussian statistics. The asymptotic relative

efficiency for the problem of scalar alternatives is given by (31)

0 2

AB1T (MIN), F 12 (121 f [ f 02~ W dCI -f x f 0 Wx dxj

(6.3-4)

where 4 (x)
f o 2 (6.3-5)

f [x-E(X)2 dFo0(x)

It can be seen from Eq. (6.3-4) that the asymptotic relative efficiency

can be anything from zero to infinity, depending on f 0 (x). In particular

if f (x) = 1 e-x 1, the APE is equal to 0.94.

6.4 Summary of Results

In this chapter, the T-detector for the detection of stochastic

signals in noise was proposed and investigated. It was shown that the

T-detector false-alarm rate can be made distribution-free given the

medians of the reference and data samples under no-signal conditions.

Even in the absence of this minimal information concerning the statistics

of the detection problem, the T-detector false-alarm rate was shown to

be distribution-free for two classes of detection problems, a) the class
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of detection problems with zero medians under no-signal conditions,

and b) the class of detection problems with symmetrical first-order

statistics under no-signal conditions.

The T-detector was applied to the detection of a gaussian signal

in gaussian noise, and its performance in the problem investigated. It

was found that the T-detector is reasonably efficient for gaussian

statistics and highly efficient for some non-gaussian statistics.

Specifically, the T-detector information rate for the case of a

gaussian signal in gaussian noise was shown to be 615 of that of the

optimum likelihood detector. The results for this problem are presented

graphically in Fig. 16.

From the results obtained here, it is concluded that use of the

T-detector instead of a likelihood detector entails only a small loss

of detection efficiency for gaussian channel statistics; while for non-

gaussian statistics, an increase in efficiency is possible, depending

on fo(X). Moreover, the T-detector is distribution-free for wide

classes of detection problema, hence applicable even when the form of

the distributions is unknown.

T--
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Chapter 7

ADATIVE T-DETECTOR

7.1 Introduction

The T-detector investigated in the previous chapter can be made

distribution-free provided the medians of the reference and data

samples under no-signal conditions are known. The T-detector remains

distribution-free even when the medians are unknown but only for two

limited classes of detection problems, namely, the class of detection

problems with zero medians and the class of problems with symmetrical

first-order reference and data channel statistics under no-signal

conditions. However, the above classes do not include many of the

problems of practical importance. There exist problems in which the

location parameters of the distributions, in particular the medians,

are non-stationary with unknown time variations. In addition, not

in all detection problems are the first order statistics symmetrical

or the medians zero. Hence, the need exists for a distribution-

free detection procedure which is applicable even when the noise

medians are changing and/or unknown and one that remains distribution-

free for a wider class of detection problems.

In this chapter, a modified version of the T-detector that is

adaptive to rapid changes in the medians and/or to unknown medians

is proposed and investigated. The conditions under which the

adaptive -detectcr remains distribution-free are obtained. It is

found that the adaptive T-detector remainm distribution-free for a

much wider class of detection problems than the T-detector. The
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adaptive T-detector is then applied to the detection of a gaussian signal

in glussian noise, and its performance is evaluated and compared to the

performances of the T-detector and of the optimum likelihood detector.

7.2 The Modified Test Statistic

The adaptive T-detector is based on a modified version of the

T-statistic. The modified T-statintic is

n/2 
2

'2

T =-n *[ ( " 2i-1 )' (x2 - x2J (7.2-1)

i-l jul

n/2  m/2

* (viuj)

i-l jul

where vi 
= Y22i-ly', u' X2 j- x2J-l, and Yk' k n 1,2,..., n, and xt,

I 1,2,..., m, are the values of the data and reference samples ob-

tained, respectively, from Y(t) and N(t). The function *(v,u) was

defined previously. The test statistic as defined above is operating

on the sample functions Y(t) and N(t) in the same manner as the system

shown in Figure 17. Here IT 1 and 1/T2 are, respectively, the rates

a' which Y(t) and N(t) are sampled.

Application of the adaptive T-detector to the detection of

stochastic signals in noise requires, as did the T-detector, that the

variances of the reference and data samples are identical under no-

signal conditions. The latter will be true, for instance, if the

adlitive disturbances in the reference and data channels have first
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order statistics of identical form and differing, if at all, only in

their location parameters.

Y(t) +v(t) V(t

Digital
Simulation T

of ___01
T-statistic

Delay
'F2

2

N(Adder Sampler

Fig. 17. Block Diagram of Adaptive T-detector

7.2.1 Conditions for Distribution-free Modified Test Statistic

The conditions under which the modified T-statistic is distri-

bution-free are given by the following theorem.

Theorem 7.1

The modified T-statistic false alarm rate remains asymptotically

distribution-free for the class of detection problems with reference

and data channel first-order statistics having the following properties
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under no-signal conditiops:

a) the first-order statistics are stationary or quasi-stationary

in form with at most non-stat4 ouary location parameters;

b) the reference and data channel first-order statistics are

of identical form, differing, if at all, only in their

location parameters;

c) the members of each sample pair (Y2iV Y2i-1 ), i w 1, 2, ... ,

n/2 , have identical first-order statistics;

d) the members of each sample pair (X2j, Xj.), J 1, 2, ... ,

m/2 , have identical first-order statistics

Proof'

Because of condition (a) we have that

F Yk(y-Mk) - Fo O(y), all k - 1, 2, .... n (7.2-2)

and

F (x - N (x) , all L- l, 2, ..., m (7.2-3)

where M and N, are, respectively, the medians of the random variables

and X Moreover, because of condition (b) we have that

F k (y-Mk) - Fx (x-N V FO(X al k - 1, 2, ... , n (7.-4)
1 - i, 2, ... , m

Conditions (c) and (d) in conjunction with Eq. (7.2-4) simply state,

respectively, that

F (Y-Mi) - F (y-Mi) = Fo (y) , all i - 1, 2, ... , n/2y 2 i-I 
Y21

(7.2-5)



101

and

F ( -N (x - = F (x) , all j - 1, 2, ... , m/2x j -1 x 2j0

(7.2-6)

Using Eq. (7.2-5) , we obtain the probability density of V where

Vi - Y2i " Y2.-l" This is

Cvi(v) j f f (Y) f  (y + v) dy
-O

flif (x -Mi) f (x +V-M)dx

0
f (x) f 0(x + v) dx: (7.2-7)

Thus, the density functions of the random variables Vi , i 1, 2, ... ,

n/2 are the same and given by Eq. (7.2-7) above. In the same manner

and using El. (7.2-6), it is easily shown that the random variables

U, J = 1, 2, ..., m/2 have the same density, given by Eq. (7.2-7)

also. Thus, it has been established that the random variables Vi

i = 1, 2, ..., n/2 and U, J = 1, 2, ..., m/2 , have identilal distri-

butions. Hence, according to reference (31), the mean and variance

of the modified test statistic are given by Eqs. (6.2-2) and (6.2-3)

where F (0) must, in this case, be substituted by Fv(0) where Fv(v)

is the common distribution of Vi and U under no-signal conditions.

Also, in this case, m and n must be substituted in Eqs. (6.2-2) and

(6.2-3) by n/2 and m/2, respectively. From these expressions for
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the mean and variance, It is nc L ti,L a neccssary wa cuf'icient

condition fur .,e modified test t tI.itltc Vse-alarmi rate to be

, ptoticr.'2.y distribution- rcc in that zero 1:t a .pecifieu quantile

o0 "he distribution Fv(v), regvdle n of the chrunnel sttirlcc. This

can be shown to bt' tr u us.iit iq. (7.2-7). Thus

0

IF v(0) - f V (y) dv (7.2-8)

0- f N

* 0

,f- F(x) dFo (x)

= q.e.d..
2

This ccmpletes the proof of the theorem.

It is seen from the above theorem that regardl!ss of the form of

the channel statistics and reg-rdless of whether the noise medians

are rapidly varying and/or unkmown, the modified T-statistic remains

distribution-'rce for the class of detection problems with reference

an. data chznnel irst-order statistics of identical and stationary

form, tuie',' no-rcipaul condUtions. .'or this el.a of detection problems,

.- te mean tnd v".ria-ice under no-silfnal conditions are
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E0  -T n 1 (7.2-9)

2[ T ] 2 for m>>n >>7 (7.2-10)

7.2.2 The Modified T-statistic Efficacy

For the class of detection problems given by Theorem 7.1, the

modified T-statistic mean under signal conditions is

00 0

Ee L T mn j 1-G v(x)] dF v(x) + J Gv(v) dF v(v) (7.2-11)

0 - o

where G x) and F (x) are the distributions of the random variable

V under signal and under no-signal conditions, respectively. Proceeding

in the same manner as in Chapter 6, we obtain the efficacy of the

modifiea T-statistic for m > > n > > 7. This is

24dG (x) dZW dGv(x) ()
e24 d =0 v dG 00]

- w 0 O

(7.2-12)

7.2.3 Performance indices

It was shown in the previous chapter that the T-statistic satisfies

all of the conditions (A) - (F) in the weak signal case. The modified

T-statistic, if expressed in terms of vi and uj, is equivalent to the

T-statistic; hence, it too satisfies all of conditions (A) - (F) in the

weak signal case and whenever d =(x) exists. Thus, in the weakdO 9=
signal case and for the class of detection problems specified by theorem

7.1, the modified T-statistic performance relation and output signal-to-

noise ratio are given by
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24 dGV () d 00dG (x) F()2 0n

[f dO 9=0 Fe J 90 j

= 2 [ erf-1 (1-2a) + erf-1 (l-21)]2

and 0dvxGodv() (7-2-13)

-6 ~ ~ ~ ~ , 42nG d ()-x) x

-w0

(7.2-14)

The efficacy given in Eq. (7.2-12) may also be used to obtain the

asymptotic relative efficiency of % with respect to other statistics.

Thus, the efficacy specifies all the performance indices of the adaptive

T-detector for the conditions under which the efficacy given in Eq.

(7.2-12) is valid.

7.3 Applications

In the following, the adaptive T-detector is applied to the detection

of a gausslan signal in gaussian noise; its performance in the problem

is evaluated and compared to the performance in the same problem of the

T-detector and of the optimuim li.kelihood detector.

7.3.1 Detection of Narrow-Band White Gaussian Signal in Additive
White Gaussian Noise

The probability density fu mctions gv(x) and fP(x) are, in this

cise, 'ven by
2

x

fV(x) = e 2.2 - < x < (7.5--)
4'T2
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2
1 x

g = eW e- *2(0+1) , < x < a (7.3-2)

Thus,

dG(x) = - 2  f(x) (7.3-3)

dO 0 2

The adaptive detector efficacy is obtained using Eqs. (7.3-i) and (7.3-3)

in Eq. (7,2-12). The efficacy is

fx 2  0 x 2

0 CO

~1 3
2 2

Tr

Using Eqs. (6.3-i) and (7.3-4) we obtain the asymptotic relative

efficiency of the adaptive T-detector with respect to the T-detector.

The ARE is

AM x,)= (7.3-5)11111

Tn m (M, N) 2

The asymptotic relative efficiency of the adaptive T-detector with

respect to the optimum likelihood detector is obtained using Eqs.

(B-59) and (7.3-4). The ARE is

ARET L* = 0.305 (7.3-6)
nln, n

The results for this problem are presented graphically in Fig. 18

7.4 Summary of Results

In this chapter, a modified version of the T-detector that is

adaptive to rapid changes in the location parameters - specifically
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the medians and/or to unknown medians - vas proposed and investigated.

The conditio s under which the adaptive T-detector remains distribution-

free were also obtained. It vms shown that the adaptive T-detector

false alarm rate remains asymptotically distribution-free for the class

of detection problem with reference and data channel first-order

statistics that are of identical and stationary form, under no-signal

conditions.

The adaptive T-detector was applied to the detection of a gaussian

signal in gaussian nois6, and its performance inimstigated. It was

found that the adaptive T-detector is half as efficient as the T-detector.

This, however, is expected since the adaptive detector utilizes for

detection only half as many samples as the T-detector; the other half

is used to make the adaptive detector distribution-free for a wide

class of problems even when the medians are rapidly varying and/or unknown.

The adaptive N-detector information rate was found to be 30$ of that of

the optimum likelihood detector.

Fr= the results obtained in this chapter, it is concluded that

use of the adaptive T-detector instead of a likelihood detector entails

a small loss of detection efficiency for gaussian channel statistics.

However, the adaptive T-de-ector is applicable even when the form of the

distributions is unknown, since it remains distribution-free for a wide

class of detect.on problems.
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Chapter 8

CONCLUSION

8.1 Sumary of Problem Discussion and Procedures

We have been concerned in this work with a class of two-input detection

systems for digital commnication over random and unknown channels. The

two-input systems herein investigated possess false-alarm rates that are

invariant for wide classes of channel statistics. The motivation for

considering such systems arises froa the need of insuring an acceptable

performance in a changing and/or inccmpletely known eirrronment.

Specifically, in this work, coincidence detection prc'edures with

invariant or distribution-free false-alarm rates were proposed and inves-

tigated. In the distribution-free coincidence procedures investigated, the

threshold was chosen to be a specified noise distribution quantile (i.e., the

median) so that the test statistic possessed, asymptotically and under no-

signal conditions, a known distribution, independent of the statistics of

the detection problem.

The coincidence detection procedures were subsequently modifie. so

that the detectors based on them constituted learning systems with respect

to slowly varying and/or known location parameters. The coincidence pro-

cedures were modified in still another manner so that the detectors

utilizing these modified procedures constituted adaptive systems with

respect to rapidly varying and/or unknown location parameters.

The distribution-free coincidence detectors were applied to various

detection problems of practical importance; their performances were

evaluated and compared to the performance of comparable likelihood

detectors.

In addition to the distribution-free coincidence detectors, a

detector well suited for the detection of stochastic signals in noise was
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proposed and investigated. The T-statistic was subsequently modified so

that the detector utilizing the modified statistic constituted an adaptive

system with respect to rapidly varying and/or unknown location parameters.

After obtaining the wide classes of detection problems for which the T-

detector and the adaptive T-detector false-alarm rates remaine4 distribu-

tion-free, the detectors were then applied to detection problems of

practical importance; their performances were evaluated and compared to

that of the optimum likelihood detector.

8.2 Conclusions

The invariant nature of the test statistic distribution under no-

signal conditions insured a false-alarm invariant with respect to changes

in the channel statistics. The median of the noise under no-signal

conditions was the only information concerning the channel statistics

that was required by the distribution-free .oincidence procedures.

Also obtained were the classes of detection problems for which the

false-alarm rates of the above coincidence procedures remained distribution-

free.

It was found that distribution-free coincidence detectors were quite

efficient, though sub-optimal, for channels with gaussian statistics, and

highly efficient for channels having a combination of gaussian ev.d impulse

noise.

The T-detector and the adaptive T-detector were found to be reasonably

efficient for the detection of gaussian signals in gaussian noise and

highly efficient for some non-gaussian channel statistics.

In general, from the results obtained in this investigation, it is

concluded that use of the distribution-free detectors proposed here,

instead of equivalent likelihood detectors, entails only a mUll loss of
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detection efficiency for gaussian channel statistics; while in the case of

impulse and gaussian noise present in the channel, use of 'he distributioi-

free detectors refsults in higher detection efficiency. Mreover, the

distribution-free detectors have invariant false-alarm rates for wide ]
classes of channel statistics - hence, they are applicable even when the

form of the probability distributions is unknown. In addition, the I
detectors proposed herein have invariant and simple structures and can,

therefore, be easily implemented.

8.3 Recommendation for Further Study I
The distribution-free detectors proposed in this investigation merit I

further consideration. In pArticular, the performance of these detectors

for large signal-to-noise ratios needs to be investigated. It would also

be of interest to investigate their performance and distribution-free

nature for the case of dependent samples. The above studies are in

general difficult to do theoretically; hence, a computer simulation study

and/or experimental investigation could be substituted.

The distribution-free coincidence detection procedures investigated

utilized the median under no-signal conditions as their threshold level,

However, other distribution quantiles cculd also be used. An investigation

of the properties and cfaluation of the performance, in detection problems

of practical importance, of coincidence detection procedures utilizing

as threshold levelq ouantiles other thrn the median, would constitut.e

an important extension of the present work.

Finally it would be of interest to investigate the distribution-

free nature and detection efficiency of a generalized coincidence detec-

tion procedure employing as test statistic a weighted sum of coincidence

type test statistics having various distribution quantiles as their

respective threshold levels. In connection with the generalized coinci-

dence procedures, it would be of importance to obtain a weighting



p.ocedure that minimizes the variance of th.! gentralized coincilence

test statistic or better yet to obtain a 'we Lj;ht Ln procedure that

maximizes the information rate.
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I

I Appendix A

i DEECTION PROBLS INVESTIrATED

I A-I Detection of a Constant in Additive Noise - General Case

In this problem, the signal is either one of constant amplitude

or a sine wave of known phase sampled always at the same point, preferably

at its peak, so that as far as the samples are concerned, this is equiva-

lent to a signal of constant amplitude. The signal-to-noise ratio 0 is

[defined as

=A (A-1)
a

where a is the noise variance and A is the amplitude of the constant
Isignal in the case of a constant signal, or the peak amplitude of the

sine wave in the case of a sin'isoidal signal,

The probability distribution function Fo(y ) under no-aignal conditions

and the probability distribution Gs(Y) under signal conditions are

related as follows

G0 (Y) - Fo(y - e) (A-2)

hence (/i)

dG (y) dF(y - 0) f

dO m_0_ = - f0 (y) (A-3)

where f0 (y) is the probability density function under no-signal conditions.

ji A-2 Detection of a Constant in Additive Gaussian Noise

LThis detection problem is a specific case of the previous general

[
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problem, with 2
1 2

fo(y) e (A-4)

Hence

2
dG (y) Ye = - .1 e 2 < y < G ( A -5 )
dO Q0 42T7

A-3 Detection of a Constcnt tn Additive Combina+ton of Gaussian and

Impulse Noise

This detection problem is also a specific case of the gefteral

problem treated in section (A-i), with probability density under no-

signal conditions f0 (y) given by

f0 (y) -ae- b ly c ) -- <y< (A-6)

This form of noise was chosen because it realistically represents

(11, 24) the amplif ide statistics of a noise source consisting of an

additive ccnbination of gaussian and impulse noise. The relationship

between the parameters a, b, and c can be derived from the following

eCuations

f f 0 y) dy - 1

f y2 fo(y) dy - 1

the latter equation simply ensuring a noise variance of one. The
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relation of interest is

& c (A-7)

r3 ("ic)

For this problem

dG(
d = ae9I , - <y < (A-8)

A-4 Detection of a Sine Wave of Unknown Phase in Additive Gaussian Noise

The distribution function under signal conditions for this detection

problem has been shown to be (25)

IT2:f
Ge(Y) f 0 - - 2 -4e c y) dy (A-9)

y K0 2-l d (2K-)
"*( ) + Z a < > I

CF K-1 t I dy(2-a

where the mean of the noise is assumed to be zero, a2 is the mean square

value of the noise) A is the maximum amplitude of the sine wave and e

is defined as

A2  (A-1)

2a

that is, 0 is the ratio of the mean square value of the signal to the

mean square value of the noise. The functions 0(y) and 0 (y) are

defined as
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2
Iy

(y) -  e 2 " -  (A-I1)

(y) f (x) dx < - <y < (A-12)
. m

The distribution F0(y) under no-signal conditions is found from Eq.

(A-9) by setting 0 - 0

F* y ( Z)- (A-13)

Differentiating Eq. (A-9) gives

dG(Y)I Y20By~ w i - y e "23 ,. < y <= (A.O

A-5 Envelope Detection of a Sine Wave in Narrow-Band Gaussian Noise

In this detection problem, the observed waveform is the envelope

of a sine wave and additive narrow-band noise. The frequency of the

sine wave is the same as the center ftequency of the noise baud. The

noise is assumed to be a gaussian random process with zero mean. Under

these conditions, the distribution functions under signal and under no-

signal conditions are (26)

g (y) X e - 2a  I (29)1/2] , y >0 (A-15)

=0 , y<0

r 2 2

f (y) e 20 > 0 (A-16)

0 , y<0
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where y is the amplitude of the envelope, a2 is the mean square value

of the noise, I (x) is the modified Bessel function of the first kind,

zero-th order, and the signal-to-noise ratio 8 is equal to the signal-

to-noise power ratio; namely

A2

e -- - (A-17)
202

where A is the peak amplitude of the sine wave.

The distribution function under no-signal conditions is

2

Fo0(y) -1 -e 2d 2 y > 0 (-8

-0 , y<O

From Eq. (A-15) we obtain the distribution fbmction under signal

conditions, which in turn gives (4)

2

dG 0(y) 2 2I "...L_2
e-- e y > 0 (A-19)dO Ono 2a2

-0 , y<0

A-6 Squae .Law Detection of a Sine Wave in Narrow-Band Gaussian Noise

In this detection problem the signal is again a sine wave inersed

in additive narrow-band noise. The frequency of the sine wave is the

same as the center frequency of the noise band. The noise is assumed

to be a gaussian random process with mean zero and mean sqaare value one.

The observed waveform is the output of a square-law detector. The

probability densities of the output of the square-law detector under
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signal and under no-signal conditions are

go(y) - e -(Y + e) 1 0 [2 ] , y >0 (A-2O)

-0, y<0

f (y) =e - y  , 0 (A-21)

=0, y<O

where 10 (x) is the modified Bessel function defined previously, and the

signal-to-noise ratio 0 is equal to the signal-to-noise p"er ratio;

namely

A A2  (A-22)

where A is the peak amplitude of the sine wave, and a'2 is the mean

square value of the noise in this case equal to one. From Eq (A-20)

we obtain

dGe(Y) _yd( ye -Y y >0 (A-23)de e=o

=0 , y<0

A-7 Detection of Narrow-Band White Gaussian Signal in Additive Narrow-

Band White Gaussian Noise

In this problem, the observed waveform is a sample function from

a random process which is the sum of a narrow-band white gaussian signal

process and a narrow-band white gaussian noise process. The processes

are centered at the same frequency and have zero means. The probability
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densities of the detector input under signal and under no-signal

conditions, respectivel , are 2

__ __ __ __ __ _2cr 
2 (1+8)

go(%) =aV(1 +ae - m < y< m  (A-24)
2

_

2

S , -,r2- e <y < (A-25)

where aN2is the mean square vlue of the nosdtesignalto

Thie daioisibuo ftoo the dealtonieor nptdsigna

condiions obtinedfromEq. A-21-), s(gien6b

2
_____2 2

co (y)f ebaine < Eq. (A-2)

22

-w N

= = f ( (A-8)

de e2 0
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A-8 Eavelope Detection of Narrow-Band White Gaussian Signal in
Additive Narrow-Band White Gaussian Noise

In this problem, the signal is again a narrow-band white gaussian

random process immersed in an additive narrow-band white gaussian noise

process. The signal and noise random processes are assumed to be

centered at the same frequency and to have zero means. However, in

this problem, the input waveform prior to its examination by the

detector is passed through a linear enveilope datector. Thus, the

observed waveform is the envelope of a sample function from a random

process that is the sum of two narrow-band white gaussian processes.

The probabiiity densities of the envelope under signal and under no-

signal conditions are (27)

2~y

g9 (y) *** *" -e 2N(+e), y >o (A-29)I

aN 2(1 +- e )

0 , y<O

2

22

ya, (lA+ o)

fo (Y )  -2 e _c: , y 2! 0 (A-30)

CN

=0 , y <O

wilere a and cN are, respectively, the signal and noise mean square

values. The signal-to-noise ratio 0 is equal o the signal-to-noise

power ratio

2
OS
12 (A-31)

"N



L,

The distribution function G (y) under signal conditions is

2

G(Y) f a-. e 2Y dy (A-32)

0

YI
4 1+"0

Differentiating, we obtain

dG (y)
" (Y) (A-33)

A-9 Square-Law Detection of Narrow-Band White Gaussian Signal in

Additive Narrow-Band White Gaussian Noise

In this detection problem, as in the previous two, in the absence

of signal, the channel output is a sample function of the noise narrow-

bur.d white gaussian process; and, in the presence of sign4, the channel

At )ut .s the sum of two sample functions - one from the noise and the

-)ther from the narrow-band white gaussian signal process. The signal

and noise processes are assumed to be centered at the same frequency

and to have zero means. The channel output prior to its examination

by the detector is passed through a square-law detector (27). The

probability densities of the square-law detector output under signal

and under no-sirnp1 'nit r , "esveczvely, are (2,')

g0(y) 2 e y(0 (A-314)
N r (. + 0)

=0 , y<0

---------------------------
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2
fo(y) 2 e aN , y > 0 (A-35)

c'N

-0 , y<O

where a.2 and o2 are, respectively, the signal and noise mean square

values and 0 is the signal-to-noise power ratio

2

e a 2 (A-36)

The distribution function under signal conditions is

1

G0(y) =f f(x) dx (A-37)
0

Differentiating, we obtain

dG (y) Y fo(y) (A-38)
d O o

I-



125

Appendix B

LIKELIHOOD ZEMBS

In this appendix, the likelihood detectors associated with the

detection problems treateC In this investigation are presented, and thctr

performance in the above problems evaluated.

It is well known .hat a likelihood detector bases its decisions on

the likelihood ratio statistic defined as

n gO(y i )
n0 i

i=l

where n is the number of independent samples extracted from the observed

wavefcrm Y(t), and g9), fo(V) are the probabiUty densities of the

detector inpat under signal and under no-signal conditions, respectively.

Fbr the weak signal case, and provided the derivative of g(y) with

respect to 0 exists and is continuous at G = 0, the likelihood ratio

statistic is equivalent to

= n o(Yi )  (B-2)
i =1

where

d g0(y)
b'(y) o (B-3)

The likelihood statistic given in Eq. (B-2) satisfies condition (A)-(F)

in the weak signal case and for the problems investigated. Thus, its

performance relatior and output signal-to-noise ratio are given by
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K e2n = 2erf' (1-2a) + erf 'l-23)] (B-4)

-)=e47 (B-5)

where the efficacy K* is (5)

b' 2 (y)

The specific likelihood detectors associated with each particular

detection problem and their efficacy in the problem are given below.

B-1 Detection of a Constant in Additive Gaussian Noise

Case I. The additive notse statistics are assumed to be stationary.

Thus, the mean and variance under no-signal conditions of the detector

input will be assumed to be known, since they can easily be obtained for

a stationary process. The mean under no-signal conditions can then be

subtracted from the reference and data waveforms, and the resulting

waveforms divided by the variance so the random variable Y representing

the amplitude of the detector input is normalized to a N(O, 1) random

variable. Eqs. (A-2) and (A-4) are then applicable. Utilizing them

in Eqs. (B-2) and (B-3) we obtain (5)

n

Z Y, (3-7)
n nL

K* 1
K = 1 (B-8)

So, for this case of known mean and variance under no-signal conditions,

only a data sample is required by the likelihood detector.



127

Case II. In this case the mean under no-signal conditions is assumed

to be unknown or quasi-stationary, while the variance under no-signal

conditions is assumed to be stationary so that, if unknown, it can be

easily obtained. Thus, the input can be normalized to have a variance

of one. Fbr this case the probability densities of the detector input

are

(y-m)2

_22

1 2x
1oy .: e -- < y < "(3-10)

where

A0=-
a

Thus

b'(y) - -< y< (B-12)

- (y-M) ±o (y)

and the likelihood ratio statistic is

n

L *(M) =~ - (y., - M) (B-13)
i =1

However, the man M is unknown. To apply the above statistic, the unknown

mean will be estimated from a reference sample function obtained under
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no-aignal conditions. The sample mean R is chosen as the estimator

of M.

m

M A xj (B-14)
j .1

th

where xj is the value of the jth sample obtained from N'(t), the

reference sample function. Utilizing M, the likelihood statistic becomes

L* 1 (In
nnL

i =1

n m

i--. j=l

The mean of L under signal conditions isn

EjL*] = 6 (B-16)

and the variance under no-signal conditions is given by

%o2[L*] =n+ I (B-17)

Hence, the efficacy of the likelihood statistic is

rd E O(L ) 1 =
nQ (B-18)L ao(L n)

1

+nm
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Case III. The mean under no-signal conditions is assumed to be

non-stationary, while the variance is assumed to be stationary. This is

a conceivable prcctical situation. Since the mean is non-stationary and

its time variation is unknown, it cannot be estimated; hence, the likeli-

hood detector cannot be employed if only one sample function is used.

However, if two channels -- a reference and a data channel with

identical statistics -- are utilized, we may eliminate the need for

knowing the mean if the reference sample function is subtracted from the

data sample function and a decision is based on the samples extracted

from the difference waveform. If, in addition, the difference waveform

is divided by the known variance, then the probability densities of the

amplitude of the detector input Z are independent of the time varying

mean, and are given by

2z

i ''1

f 0 z)' ._ e- - < z < -(B-19)

((z-2))

2

98(z.) - 1 e 2 - < Z- < -(B-20)

Thus

b'(z)-1 z fo(Z)

and

n

L (B- 21)

K * (B-22)
- 2
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B-2 Detection of a Constant in Additive Noise-Uspccified. Dis:-i'-itions

in h.s general problem the form of the distributions Ga(y) and

F0 (y) are unknown. The only information available is that Ge(y) and

Fo(Y) obey the relation

G6(y) F0 (y - 8) (B-23)

Thus, the likelihood ratio statistic cannot be used in this case of

distributions of unknown form. However. the likelihood ratio statistic

obtained under a similar gaussian situation can be, and usually is,

enpi.ye( . This is given by Eq. (B-7).

Case I. The mean and variance under no-signai conditions are

assumed to be stationary; hence, they can be easily obtained if unknown

and the detector input amplitude Y normalized, so that

E [Y] = 0 (P-24)

ao02 [Y] --i

The likelihood statistic utilized in this case is

n

=l

with efficac) given (5) by

K = 1 (B-25)

Case II. The mean is unknown or quasi-stationary under no-signal
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conditions, while the variance is assumed stationary and known. The

detector utilizes the statistic

n n

y 71i- Z X (B-26)
i=1 j-1l

Since for this general problem ga(y) - f 0 (y-8) we have

n ]
* 1 '17 (B-27)

J0 L] L E[YJ - L' E[X]
i=l j=l

and

oLL] . 1 (B-28)

for eii input normalized with respect to variance. Hence, the efficacy is

K* -- 1-(B-29)

m

Case III. The mean is non-stationary under no-signal conditions,

and its time variation is unknown. The variance is assumed to be

stationary and known. The mean cannot be estimated unO,,:', -. ., ,t( d

conditions;. Hence, the likelihood detector, i order ,.ot -.o dc ;-n( c;.

the mean, will base its decision on measurements mad-- on the d ffern:e

between data and reference sample functions obtained from channels of
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independent but identical statistics. We -.ifference waveform is also

noralzed so as to have variance of one. Under the stated conditions

n
* = (B-30)

fll

where

z(t) -Y(t) - N (t)

Since Go(y) = 7o(y-0), we have that

E (Z) = e

and (B-31)

a0
2 (Z) 2

Thus

(B-32)

a2* 20[LO = n

Hence the efficacy is

* 1
K = (-33)

B-3 Detection of a Constant in Additive Combination of Gaussian and

ImpuLse Noise

This detetion problem is a specific case of the general problem

discussed in the previous section. Hence, as stated there, if the formb

of the distributions are not known, then the binary integrator of j

I
£
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Eq. (B-7) will be used since, in the absence of knowledge concerning the

form of the distributions, the likelihood ratio statistic obtained under

the gaussian assumption is usually employed. The efficacies of the

statistic for the present detection problem are those given by Eqs. (B-25),

(3-29) and (B-33).

B-4 Detection of a Sine Wave of Unknown Phase in Additive Gaussian Noise

Case I. The mean and variance under no-signal conditions are assumed

stationary and known. Fbr this case the likelihood ratio statistic and

its efficacy are given (16) by

n 2

L~ ~ (B-.34)
2

and

K =2 (B-35)

Cas e II. The mean under no-signal conditions is assumed to be

non-stationary, while the variance is assumed stationary and known. In

this case) as stated previously, the likelihood detector will base Jts

decisions on measurements made on Z(t), the difference between the data

and reference sample functions normalized to have unit variance. Thus,

the amplitude Z of the detector input is given by

Z =Y - X (B-36)

where Y and X are ,' amp2itudes of the data anrl reference channe2

outputs. Since Y and X are assumed 'o he independent, the probability
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densities of Z under signal and under no-signal conditions are

W

ge(z) = J g9 (y) f0(y-z) dy (B-37)
-@0

fo(z) = f 0 (y) f 0(y-z) dy (B-33)

Utilizing Eqs. (A-9) and (A-13) we obtain

0

b'(z) = j (y2  I) fo(y) fo(y-z) dy (B-39)

-00

= (. 1) f0(z)V -0 < Z < 0

Thins, the likelihood ratio statistic and its efficacy are

2
*z nn

i=1

and

K (B-41)

B-5 Envelope Detection of a Sine Wave in Narrow-Band Gaussian Noise

Case I. The assumptions for this case are the same as those made

in Case I of Section B-4. The likelihood ratio statistic and its efficacy

are giver. (5) by

n

n n
i = 1

K = 1 (-3)
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Case II. The assumptions are the same as those made in Case II of

the previous section. Hence, for the difference envelope random variable

V, utilizing Eqs. (A-15) and (A-16) we have

g9(v) 2 0

(B-44)
O V< 0

v
f (v) - e v > o

(B-45)
=0 v< O

Hence

2

and the likelihood ratio statistic and its efficacy are

n v2

L* :=l 11(B-47)

i =1

K (B-48)

B-6 Square-Law Detection of a Sine Wave in Narrow-Band Gaussian Noise

Case I. The assumptions here are those stated in Section B-2, Case I.

The probability densities under signal and under no-signal conditions are

given by Eqs. (A-20) and (A-21), respectively. Hence

b1(y) =(y 1) e-Y  y2- , y>o

(B-49)
=0 y< 0
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Thus, the likeli±.ood ratio statistic is

L n X oIyi

(B-50)( o}
~n Z (Y -1i)

i-i

The efficacy is

K 0

(B-51)
=1

Case II. The assumptions and discussion in connection with Cuse II

of Section B-4 pertain here also. Utilizing Eqs. (A-20) and (A-21) we

obtain the probability densities of the square-law envelope V of the

difference waveform z(t). These are

9 (v) =e 1 1Io[2J" ,;V v>o0

(B- 52)
-0 , V< 0

( ) -v
f0 v) =e v> o

(B-53)
= v v< 0

Hence

1

b'(v) = (v - 1) fo(v) (B-54)

m,2 0,•
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and the statistic and its efficacy are

n

1n nIV (B-5)

B-7 Detection oi" Nerrow-Band White Gaussian Sixnal in Additive Narrow-

Band White Gaussian Noise

This problem Involves the detection of a stochastic signal in noise;

hence, the information on the presence or absence of the signal is carried

by the scale parameters of the distributions. In fact, the decision on

the presence or absence of signal is based on the difference between

the variance under signal and under no-signal conditions. Location

parameters rch as the mean carry no information. Thus, in the detection

of stochastic signals in noise, if the means under signal or under no-

signal conditions or under both are unknown or non-stationary, they By

be subtracted out of the channel output by capacitive filtering. In this

manner the amplitude of the channel output will be the same stationary

man, namely zero, under signal and under no-signal conditions, and a

difference between the distributions 0 (y) and 7o(y) can be attributed

to a difference in variance and, hence, to the signal. In this and the

following problems, the channel output will be assumed to have been

subjected to capacitive filtering prior to being predetection processed

or prior to its examination by the detector.

Vse of Eq. (A-24) yields

b'(y)"A (y2 - 1) fo(y) (B )
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where f0 (y) .s given by Eq. (A-25). Thus, the likelihood ratio statistic

is

L* b'(yi)T

i-l

(B-58)
n

i-i

which is a square-law summing or energy device. The efficacy of the

statistic is

K f (y2. _)2 o(Y ) d' (3-59)

1
2

B-8 EnveloPe Detection of Narrow-Band White Gaussian Signal in Additive

White Gaussian Noise

From Eq. (A-29) we obtain

2b'(y) 2Y -- ( oY )  (B-60)

thus, the likelihood statistic is

n Y 2

n n 21 (B-61)

which is an energy summing device as in the previous case. The efficacy

of the statistic is



159

K= f(Y -1 f,(y) dy (B-62)

that is, twice the efficacy obtained when the energy detector is used

without envelope predetection processing.

B-9 Square-Law Detection of Narrow-Band White Gaussian Signal in

Additive Narrow-Band White Gaussian Noise

Fron Eq. (A-34) the quantity b' (y) for this problem is obtained.

It is

b' (y) (y - 1) fo(y) (B-63)

thus, the likelihood statistic is

n

R n L Yl
i-l

which is a simple summing device. The efficacy of the statistic is

K = (y - 1)2 f 0 (y) dy (B-64)

the same as that obtained by envelope predetection processiAg the input

waveform and using an energy detector.


